低溫等離子凈化設備又稱低溫等離子廢氣凈化器,在電催化總的設計概念下,分三個即獨立又混成的激發系統:微波激發區、等離子激發區、極板激發區。每個激發區有它特定的功能,但在原理上有它相似的地方。
工作區組成
1:微波激發區
本工藝有3至9個微波激發單位,根據被處理風量的不同數量不同,微波由于它的頻率相對比較高,在納秒的時間內有效作用于被處理空間(區域),由于微波的功率相對較小,因此在激發能力上也就是說電子的獲能躍遷能力上有限,本設計只是把微波作為初頻激發源,在處理過程中作為一種預激發能。由于微波的預激功能,的提高等離子體區,極板區的激發能力和處理效果,由于微波技術的運用,本工藝在同類設備的比較中顯得設備精煉而效果*。
2:低溫等離子體激發
本工藝有40支至240支充有特殊氣體的無極管組成的低溫等離子體激發區,低溫等離子體區是工藝的核心技術,國外諸多科研機構室稱在常壓下實現低溫等離子體。從大量的試驗分析,常壓低溫等離子體要在工業中應用存在的困難仍舊很大,本工藝借助低氣壓的無極燈作為低溫等離子體的激發體,在無極管區實現低溫等離子體區,由于低溫等離子體在能量躍遷過程中具有的能量平衡性,在粒子撞擊中失能極少,所以低溫等離子體作為原子激發是理想的一種能。在實踐應用中,在于低氣壓究竟是多少帕?管內充什么樣的氣體有經濟價值?這沒有理論模型可言,只有通過實踐、實驗、分析。
極板區
根據被處理氣體的流量,極板間的電壓分12KV、16KV至42KV,極板間加以足夠高的電壓,在引風的作用下,極區由于負壓的作用,按照法拉第暗區理論、光致電離理論、自由離理論,在常壓或接近常壓的條件下有相當概率的粒子可能實現低溫等離子體。
根據三類的功能區,集中的目的是實現低溫等離子體,由于理論和實際使用條件上的區別,單一的方法獲得低溫等離子體,從功率上,外部條件上都存在差距。本工藝集三種技術與一體,經山東、江蘇、浙江三地多家醫藥、化工企業的實地測試,原廢氣的去除率非常理想,根據尼普公司的測試,高濃度廢氣去除率可達84%以上。
電催化氧化工藝集低溫等離子體、微波放電、極板放電與一體,在實際使用中實現廢氣的有效處理是極為復雜的過程,整個過程在不到1秒的時間內完成。從理論到模型都能探究到相關的機理,通過三種方式的集中放電,廢氣分子從低能的E,在千分之一秒的時間內躍遷到足以使其電離的Em級,廢氣分子鍵充分斷裂,在雪崩式的撞擊中斷裂后的粒子由于質量小,被進一步躍遷,與反應堆內的氧離子氫氧根離子發生反應,生成無害無味的CO2、H2O以及其它高價化合物。同時由于反應堆內臭氧以及紫外線的作用,去除不同范疇的廢氣化合物,實地較為廣譜的去除空間。
應用
低溫等離子體技術在廢氣處理中的應用隨著工業經濟的發展,石油、制藥、油漆、印刷和涂料等行業產生的揮發性有機廢氣也日漸增多,這些廢氣不僅會在大氣中停留較長的時間,還會擴散和漂移到較遠的地方,給環境帶來嚴重的污染,這些廢氣吸入人體,直接對人體的健康產生的危害;另外工業煙氣的無控制排放使性的大氣環境日益惡化,酸雨(主要來源于工業排放的硫氧化物和氮氧化物)的危害引起了各國的重視。由于大氣受污染而酸化,導致了生態環境的破壞,重大災難頻繁發生,給人類造成了巨大損失。因此選擇一種經濟、可行性強的處理方法勢在必行。
降解揮發性有機污染物(VOCs)傳統的處理方法如吸收、吸附、冷凝和燃燒等,對于低濃度的VOCs很難實現,而光催化降解VOCs又存在催化劑容易失活的問題,利用低溫等離子體處理VOCs可以不受上述條件的限制,具有潛在的優勢。但由于等離子體是一門包含放電物理學、放電化學、化學反應工程學及真空技術等基礎學科之上的交叉學科。因此,目前能成熟的掌握該技術的單位非常的少。大部分宣傳采用低溫等離子技術處理廢氣的宣傳都不是真正意義上的低溫等離子廢氣處理技術。