產品|公司|采購|資訊

              aimbiotech 3D培養芯片

              參考價面議
              具體成交價以合同協議為準
              • 公司名稱世聯博研(北京)科技有限公司
              • 品       牌
              • 型       號
              • 所  在  地北京市
              • 廠商性質其他
              • 更新時間2024/5/23 12:49:36
              • 訪問次數131
              產品標簽:

              在線詢價收藏產品 點擊查看電話

              聯系我們時請說明是 智能制造網 上看到的信息,謝謝!

              世聯博研(北京)科技有限公司(Bio Excellence International Tech Co.,Ltd),簡稱世聯博研(Bioexcellence),是一家國際前沿生命科學設備、耗材、試劑代理銷售與技術服務科技企業,于2010年成立于北京。 世聯博研(Bioexcellence)意即聯合世界生命科學界有秀的博士研究生,通過他們向廠商、用戶傳遞專業、實效的生命科學產品與服務,把包括生物力學、3D生物打印、再生醫學、生物醫學工程、微流控&組織器官芯片、細胞微環境在內的等生命科學國際前沿產品與技術引進中國,為中國科研學者提供專業、實效的儀器設備、耗材、試劑以及科研技術服務一站式解決方案。 世聯博研有10多年的國際前沿科研儀器代理銷售經驗,已成功與國際生命科學領域近50多家的科研產品制造商以及1300多家中國三甲醫院、2100多家科研院所、600多家高校、400多家檢驗檢疫等用戶單位建立了良好誠信的長期合作關系,正以不斷引進國際前沿生命科學領域科研產品、專業和規模化的營銷渠道、高效安quan的國際聯運、快捷的海關清關報關和專業人性化售前售后的服務模式,實現了國際廠家與中國科研用戶的對接、落地實施,實現合作伙伴資源共享,共同發展,世聯博研(Bioexcellence)是個開放熱情的企業單位,熱烈歡迎國內外相關單位人士洽談、合作,共謀發展。世聯博研業務范圍:科研院所單位、生物醫學科研高校、醫院基礎科研單位等。世聯博研公司代理的品牌具有:1)近10年長期穩定的貨源2)以生物力學、細胞力學、生物打印機、電紡絲、酶聯斑點分析、細胞生物分子學、生物醫學組織工程、生物材料學為主,兼顧其他相關產品線3)提供專業產品培訓和銷售培訓4)良好的技術支持5)已成交老客戶考證6)每年新增的貨源。
              測試儀
              aimbiotech 3D培養芯片
              aimbiotech 3D培養芯片 產品信息

              生物力學相關產品及科研服務

              • 細胞或軟組織納米壓痕測試分析服務
              • Flexcell細胞拉壓流體剪切培養儀
              • 細胞牽引力、內源力測試分析儀
              • 離體或活體在體骨參考點壓痕測量分析儀
              • Optical stretcher單細胞高通量形變儀
              • 經濟型生物材料力學te性測試分析
              • 細胞組織力學te性定量分析光鑷
              • 多功能多材料生物力學te性測試分析系統
              • TGT三維血管軟骨皮膚應力培養系統
              • ITI單層細胞靜水壓力培養系統
              • 血管血流循環模擬系統
              • VCU顱腦損傷儀
              • 三維微流控芯片系統
              • 皮膚彈性測試分析儀
              • 血管生物反應器
              • 肌腱韌帶生物反應器
              • 軟骨生物反應器
              • 旋轉灌流生物反應器
              • 骨組織灌流表型生物反應器
              • 皮膚生物反應器
              • 凝膠支架種子細胞構建生物組織系統
              • 更多

              aimbiotech 3D Cell Culture Chip,三維微流控芯片系統現貨

              • 1、AIM Biotech 3D細胞培養芯片采用三通道設計,中間為3D凝膠通道,兩側為培養基通道,通過負壓吸引快速交換培養基。
                2、芯片透氣性好,可有效進行氣體交換 3采用標準載玻片尺寸(75 mm x 25 mm),兼容相差顯微鏡、熒光顯微鏡和激光共聚焦顯微鏡 4可實現不同類型細胞共培養。
                 

                AIM BIOTECH是新加坡一家專注于創新性工具研發的創業型公司,其應用領域涵蓋科學研究、藥物開發和臨床診斷范疇。AIM BIOTEC為科研市場做出的份貢獻是開發出一款易于操作的、模塊化的平臺,該平臺成功地將3D細胞培養納入了科研人員研究工作體系之中。
                AIM BIOTECH 3D細胞培養芯片概述
                AIM的3D細胞培養芯片透氣性好,而且用戶可以通過選擇不同的水凝膠,在間隔的3D和2D空間進行不同類型細胞的培養。同時可以通過對化學物濃度梯度和流體的調控很好地模擬符合用戶te定需求的微環境。

              • 訂貨信息(備有):

                1、3D Cell Culture Chips DAX-1 (25/box)

                3D Cell Culture Chips   DAX-1   (25/box)

                2、Holders HOL-1 (10/box)

                Holders   HOL-1   (10/box)

                3、Luer Connectors LUC-1 (36/pack)







                 

                3D Cell Culture Chip
                3-channel design : 3D gel region flanked by 2 media channels

                • Microscope slide format 75mm X 25mm
                • Compatible with all polymerisable gels including collagen, fibrinogen, Matrigel, etc. and combinations thereof
                • Gas permeable laminate for effective gas exchange
                • Optically clear and compatible with phase contrast, fluorescence and confocal microscopy
                • Enables monotypic or organotypic co-culture models
                • Enables the control of interstitial flow across the 3D gel region
                • Enables the control of chemical gradients across the 3D gel region
                • Sterile & ready-to-use
                • Designed for rapid media exchange through vacuum aspiration with no risk of over-aspiration
                • Designed for modular expansion with AIM Luer Connectors
                • Fits into AIM Microtiter Plate Holders for easy handling and stacking
                GENERAL PROTOCOLS APPLICATION-SPECIFIC PROTOCOLS

                BUY NOW

                Compatible with all polymerisable gels

                Dedicated 3D regions in AIM chips can be filled with collagen, fibrinogen & other hydrogels or Matrigel? & other extracellular matrixes (ECM) to suit your experimental needs. The hydrogels can be used on their own or in combination with other components to form 3D microenvironments of your choice (stiffness, pH and material compositions). 
                The miniature posts that border the 3D region are designed to set up a vertical gel wall with minimal buildup of resistance during the gel filling process. Cells can be homogeneously dispersed or included as aggregates into the gel.

                Gas exchange

                One of the key advantages of PDMS chips is the material's gas permeability, which enables cells cultured within PDMS devices to 'breathe'. However, PDMS absorbs hydrophobic molecules from solution, making it unsuitable for studies investigating hydrophobic drugs, chemicals or biological molecules.
                AIM chips have overcome the problem by using a gas-permeable plastic to laminate the device. Gas exchange takes place effectively, allowing you to set up normoxic or hypoxic culture environments as needed. 

                Optically clear

                AIM chips are made from polymers with an excellent light transmittance rate of 92%. You can visualise your experiments with phase contrast, epifluorescence, 2-photon and confocal microscopy. 

                Endothelial cell monolayer in 2D channel forming a vertical wall on collagen gel (confocal)

                Angiogenic sprouts in collagen gel (confocal)

                Enables monotypic or organotypic co-culture models

                Different cell types can be cultured together in the same channel or compartmentalised into different channels, allowing users to design models to represent different biological systems. Future AIM chips will have more 3D & 2D channel designs to cater to your needs.

                Enables the control of interstitial flow across the 3D region

                The interstitial flow across the 3D hydrogel can be controlled by setting up a pressure gradient between the flanking channels. This can be achieved by having a larger media volume in one media channel than the other, or by setting shear flow regimes that establish a pressure differential. 

                Enables the control of chemical gradients across the 3D region

                A chemical concentration gradient can be set up across the porous 3D hydrogel easily by using a higher concentration of the chemical in a channel and allowing diffusion to take place.  This feature is very useful for studies where directional cues of effectors are critical, including angiogenesis, cell migration and neurite guidance 

                Sterile & ready-to-use

                AIM chips are individually packaged for your convenience. All chips are sterile and are ready for use right out of the package. AIM chips let you focus on your experiments, rather than on device preparation.

                Designed for rapid media exchange through vacuum aspiration with no risk of over-aspiration

                Due to the small culture volumes of microfluidic devices, culture media typically has to be replenished every day. Vacuum aspiration is used to remove old media before pipetting new media into the device. Media ports in AIM chips are designed with troughs to let users rapidly aspirate old media out without the risk of accidentally aspirating all the media & cells from the device. 

                 

                Luer Connectors LUC-1 (36/pack)

                Publications

                Many of the publications listed below were conducted on lab-made devices that form the basis of AIM Biotech chips. Papers that employed the commercial chips are marked with '*'.
                TECHNOLOGY

                Key Publications

                1. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Vickerman V, Blundo J, Chung S, Kamm RD. Lab Chip, 2008, 8, 1468-1477.
                2. Cell migration into scaffold under co-culture conditions in a microfluidic platform. Chung S, Sudo S, Mack PJ, Wan C-R, Vickerman V, Kamm RD. Lab Chip, 2009, 9(2):269-75.
                3. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, Kamm RD and Chung S. Nature Prot, 7(7):1247-1259, 2012, PMID:
                4. Mechanism of a flow-gated angiogenesis switch: early signaling events at cell-matrix and cell-cell junctions. Vickerman V, Kamm RD. Integr Biol (Camb). 2012 Jun 7. PMID
                5. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD. Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13515-20. Epub 2012 Aug 6. PMID:
                6. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Aref AR, Huang RY-J, Yu W, Chua K-N, Sun W, Tu T-Y, Sim W-J, Zervantonakis IK, Thiery JP, Kamm RD. Integr Biol (Camb). 2013 Feb;5(2):381-9. doi: 10.1039/c2ib20209c PMID:
                7. Mechanotransduction of fluid stresses governs 3D rheotaxis. Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD. Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2447-52. doi: 10.1073/pnas.1316848111. Epub 2014 Feb 3. PMID:
                8. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, Kamm RD. Proceedings of the National Academy of Sciences, pp. 201417115, 2014
                9. *Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Jenkins RW, Aref AR, Lizotte PH, Ivanova E, Stinson S, Zhou CW, ... Barbie DA. Cancer Discov. 2017 Nov 3. pii: CD-17-0833. doi: 10.1158/2159-8290.CD-17-0833.
                10. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Campisi M, Shin YJ, Osaki T, Hajal C, Chiono V, Kamm RD. Biomaterials 2018 https://doi.org/10.1016/j.biomaterials.2018.07.014

                Latest Publications

                1. *MBNL1 alternative splicing isoforms play opposing roles in cancer. Tabaglio T, Low DHP, Teo WKL, Goy PA, Cywoniuk P, Wollmann H... Guccione E. Life Science Alliance, Sept 2018 doi:10.26508/lsa.201800157
                2. *3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade. Aref AR, Campisi M, Ivanova E, Portell A, Larios D, Piel BP... Jenkins RW. Lab on a Chip, 2018, DOI: 10.1039/C8LC00322J
                3. *Molecular recalibration of PD-1+ antigen-specific T cells from blood and liver. Otano I, Escors D, Schurich A, Singh H, Robertson F, Davidson BR... Maini MK. Molecular Therapy (2018), doi: 10.1016/j.ymthe.2018.08.013.
                4. *Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Ca?adas I, Thummalapalli R, Kim JW, Kitajima S, Jenkins RW, Christensen CL... Barbie DA. Nature Medicine 23 July 2018 doi.org/10.1038/s41591-018-0116-5
                5. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Campisi M, Shin YJ, Osaki T, Hajal C, Chiono V, Kamm RD. Biomaterials 2018 https://doi.org/10.1016/j.biomaterials.2018.07.014
                6. *Assessing Therapeutic Efficacy of MEK Inhibition in a KRASG12C-Driven Mouse Model of Lung Cancer. Li S, Liu S, Deng J, Akbay EA, Hai J, Ambrogio C ... Wong KK. Clinical Cancer Research 2018 doi: 10.1158/1078-0432.CCR-17-3438?
                7. Characterizing the Role of Monocytes in T Cell Cancer Immunotherapy Using a 3D Microfluidic Model. Lee SWL, Adriani G, Ceccarello E, Pavesi A, Tan AT, Bertoletti A, Kamm RD and Wong SC (2018) Front. Immunol. 9:416. doi: 10.3389/ mmu.2018.00416
                8. *Stimuli-Responsive Nanodiamond-Based Biosensor for Enhanced Metastatic Tumor Site Detection. Wang X, Gu MJ, Toh TB, Abdullah NLB, Chow E. SLAS Technol. 2018 Feb;23(1):44-56. doi: 10.1177/2472630317735497. Epub 2017 Oct 11.?
                9. *Protein corona of airborne nanoscale PM2.5 induces aberrant proliferation of human lung fibroblasts based on a 3D organotypic culture. Li Y, Wang PC, Hu CL, Wang K, Chang Q, Liu LJ, Han ZG, Shao Y, Zhai Y, Zuo ZY, Gong ZY, Wu Y. Scientific Reports volume 8, Article number: 1939(2018) doi:10.1038/s41598-018-20445-7
                10. *Functional human 3D microvascular networks on a chip to study the procoagulant effects of ambient fine particulate matter. Li Y, Pi QM, Wang PC, Liu LJ, Han ZG, Shao Y, Zhai Y, Zuo ZY, Gong ZY, Yang X, Yang W. RSC Adv., 2017, 7, 56108–56116
                11. *Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Jenkins RW, Aref AR, Lizotte PH, Ivanova E, Stinson S, Zhou CW, ... Barbie DA. Cancer Discov. 2017 Nov 3. pii: CD-17-0833. doi: 10.1158/2159-8290.CD-17-0833.
                12. *CDK4/6 Inhibition Augments Anti-Tumor Immunity by Enhancing T Cell Activation. Deng J, Wang ES, Jenkins RW, Li S, Dries R, Yates K, ... Wong KK. Cancer Discov. 2017 Nov 3. pii: CD-17-0915. doi: 10.1158/2159-8290.CD-17-0915.?
                13. *?A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors. Pavesi A, Tan AT, Koh S, Chia A, Colombo M, Antonecchia E, Miccolis C, Ceccarello E, Adriani G, Raimondi MT, Kamm RD, Bertoletti A. JCI Insight. 2017 Jun 15;2(12). pii: 89762. doi: 10.1172/jci.insight.89762.
                VASCULAR FUNCTIONS
                CANCER BIOLOGY
                IMMUNOTHERAPY
                NEUROBIOLOGY
                STEM CELL BIOLOGY
                MECHANOBIOLOGY
                OTHER MODELS
                REVIEWS

                1. Vascular Functions

                1.1. Angiogenesis

                1. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Vickerman V, Blundo J, Chung S, Kamm R. Lab Chip, 2008. 8 (9):1468-1477
                2. Surface-Treatment-Induced Three-Dimensional Capillary Morphogenesis in a Microfluidic Platform. Chung S, Sudo R, Zervantonakis IK, Rimchala T, Kamm RD. Advanced Materials, 2009. 21 (47):4863-4867
                3. Transport-mediated angiogenesis in 3D epithelial coculture. Sudo R, Chung S, Zervantonakis IK, Vickerman V, Toshimitsu Y, Griffith LG, Kamm RD. FASEB J., 2009. 23 (7):2155-2164
                4. Determining Cell Fate Transition Probabilities to VEGF/Ang 1 Levels: Relating Computational Modeling to Microfluidic Angiogenesis Studies. Das A, Lauffenburger D, Asada H, Kamm R. Cellular and Molecular Bioengineering, 2010. 3 (4):345-360
                5. Sprouting angiogenesis under a chemical gradient regulated by interactions with an endothelial monolayer in a microfluidic platform. Jeong GS, Han S, Shin Y, Kwon GH, Kamm RD, Lee SH, Chung S. Analytical Chemistry, 2011. 83 (22):8454-8459
                6. In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Shin Y, Jeon JS, Han S, Jung GS, Shin S, Lee SH, . . . Chung S. Lab Chip, 2011. 11 (13):2175-2181
                7. Ensemble Analysis of Angiogenic Growth in Three-Dimensional Microfluidic Cell Cultures. Farahat WA, Wood LB, Zervantonakis IK, Schor A, Ong S, Neal D, . . . Asada HH. PLoS ONE, 2012. 7 (5):e37333
                8. Engineering of In Vitro 3D Capillary Beds by Self-Directed Angiogenic Sprouting. Chan JM, Zervantonakis IK, Rimchala T, Polacheck WJ, Whisler J, Kamm RD. PLoS ONE, 2012. 7 (12):e50582
                9. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, . . . Chung S. Nature Protocols, 2012. 7 (7):1247-1259
                10. In vitro angiogenesis assay for the study of cell-encapsulation therapy. Kim C, Chung S, Yuchun L, Kim M-C, Chan JKY, Asada HH, Kamm RD. Lab Chip, 2012. 12 (16):2942-2950
                11. Complementary effects of ciclopirox olamine, a prolyl hydroxylase inhibitor and sphingosine 1-phosphate on fibroblasts and endothelial cells in driving capillary sprouting. Lim SH, Kim C, Aref AR, Kamm RD, Raghunath M. Integr. Biol., 2013. 5 (12):1474-1484
                ?

                1.2. Anti-Angiogenesis

                1. The stabilization effect of mesenchymal stem cells on the formation of microvascular networks in a microfluidic device. Yamamoto K, Tanimura K, Mabuchi Y, Matsuzaki Y, Chung S, Kamm RD, . . . Sudo R. J. Biomech. Sci. Eng., 2013. 8 (2):114-128
                2. Dll4-containing exosomes induce capillary sprout retraction in a 3D microenvironment. Sharghi-Namini S, Tan E, Ong L-LS, Ge R, Asada HH. Sci. Rep., 2014. 4:4031
                3. A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs. Kim C, Kasuya J, Jeon J, Chung S, Kamm RD. Lab Chip, 2015. 15 (1):301-310
                ?

                1.3. Vasculogenesis

                1. Control of Perfusable Microvascular Network Morphology Using a Multiculture Microfluidic System. Whisler JA, Chen MB, Kamm RD. Tissue Engineering Part C: Methods, 2014. 20 (7):543-552
                2. In Vitro Microvessel Growth and Remodeling within a Three-Dimensional Microfluidic Environment. Park Y, Tu T-Y, Lim S, Clement IM, Yang S, Kamm R. Cellular and Molecular Bioengineering, 2014. 7 (1):15-25
                3. Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Jeon JS, Bersini S, Whisler JA, Chen MB, Dubini G, Charest JL, . . . Kamm RD. Integr. Biol., 2014. 6 (5):555-563
                4. Human Vascular Tissue Models Formed from Human Induced Pluripotent Stem Cell Derived Endothelial Cells. Belair DG, Whisler JA, Valdez J, Velazquez J, Molenda JA, Vickerman V, . . . Murphy WL. Stem Cell Reviews and Reports, 2015. 11 (3):511-525
                5. Elucidation of the Roles of Tumor Integrin β1 in the Extravasation Stage of the Metastasis Cascade. Chen MB, Lamar JM, Li R, Hynes RO, Kamm RD. Cancer Res., 2016. 76 (9):2513-2524
                6. On-chip human microvasculature assay for visualization and quantitation of tumor cell extravasation dynamics. Chen MB, Whisler JA, Fr?se J, Yu C, Shin YJ and Kamm RD. Nat Protoc. 2017 May; 12(5): 865–880.
                7. *Functional human 3D microvascular networks on a chip to study the procoagulant effects of ambient fine particulate matter. Li Y, Pi QM, Wang PC, Liu LJ, Han ZG, Shao Y, Zhai Y, Zuo ZY, Gong ZY, Yang X, Yang W. RSC Adv., 2017, 7, 56108–56116
                ?

                1.4. Flow Response

                1. Mechanism of a flow-gated angiogenesis switch: Early signaling events at cell-matrix and cell-cell junctions. Vickerman V, Kamm RD. Integr. Biol., 2012. 4 (8):863-874
                ?

                1.5. Transendothelial Migration

                1. A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils. Han S, Yan JJ, Shin Y, Jeon JJ, Won J, Jeong HE, . . . Chung S. Lab Chip, 2012. 12 (20):3861-3865
                ?

                1.6. Migration

                1. Vascular Endothelial Growth Factor (VEGF) and Platelet (PF-4) Factor 4 Inputs Modulate Human Microvascular Endothelial Signaling in a Three-Dimensional Matrix Migration Context. Hang T-C, Tedford NC, Reddy RJ, Rimchala T, Wells A, White FM, . . . Lauffenburger DA. Molecular & Cellular Proteomics : MCP, 2013. 12 (12):3704-3718
                2. Cell Invasion Dynamics into a Three Dimensional Extracellular Matrix Fibre Network. Kim M-C, Whisler J, Silberberg YR, Kamm RD, Asada HH. PLoS Comput Biol, 2015. 11 (10):e1004535
                ?

                1.7. Permeability

                1. Constructive remodeling of a synthetic endothelial extracellular matrix. Han S, Shin Y, Jeong HE, Jeon JS, Kamm RD, Huh D, . . . Chung S. Sci. Rep., 2015. 5:18290
                ↑ Back to the top

                2. Cancer Biology

                2.1. Spheroid Dispersion

                1. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Aref AR, Huang RY-J, Yu W, Chua K-N, Sun W, Tu T-Y, . . . Kamm RD. Integr. Biol., 2013. 5 (2):381-389
                2. Validating Antimetastatic Effects of Natural Products in an Engineered Microfluidic Platform Mimicking Tumor Microenvironment. Niu Y, Bai J, Kamm RD, Wang Y, Wang C. Mol. Pharm., 2014. 11 (7):2022-2029
                3. Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit. Zhu Z, Aref AR, Cohoon TJ, Barbie TU, Imamura Y, Yang S, . . . Barbie DA. Cancer Discov., 2014. 4 (4):452-465
                4. Targeting an IKBKE cytokine network impairs triple-negative breast cancer growth. Barbie TU, Alexe G, Aref AR, Li S, Zhu Z, Zhang X, . . . Gillanders WE. The Journal of Clinical Investigation, 2014. 124 (12):5411-5423
                5. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Tan L, Wang J, Tanizaki J, Huang Z, Aref AR, Rusan M, . . . Gray NS. Proc. Natl. Acad. Sci. USA, 2014. 111 (45):E4869-E4877
                6. Identification of drugs as single agents or in combination to prevent carcinoma dissemination in a microfluidic 3D environment. Bai J, Tu T-Y, Kim C, Thiery JP, Kamm RD. Oncotarget, 2015. 6 (34):36603-36614
                7. Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and β2 integrin interactions. Bai J, Adriani G, Dang T-M, Tu T-Y, Penny H-XL, Wong S-C, . . . Thiery J-P. Oncotarget, 2015. 6 (28):25295-25307
                8. *Stimuli-Responsive Nanodiamond-Based Biosensor for Enhanced Metastatic Tumor Site Detection. Wang X, Gu MJ, Toh TB, Abdullah NLB, Chow E. SLAS Technol. 2018 Feb;23(1):44-56. doi: 10.1177/2472630317735497. Epub 2017 Oct 11.
                ?

                2.2. Extravasation

                1. In Vitro Model of Tumor Cell Extravasation. Jeon JS, Zervantonakis IK, Chung S, Kamm RD, Charest JL. PLoS ONE, 2013. 8 (2):e56910
                2. Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Chen MB, Whisler JA, Jeon JS, Kamm RD. Integr. Biol., 2013. 5 (10):1262-1271
                3. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Bersini S, Jeon JS, Dubini G, Arrigoni C, Chung S, Charest JL, . . . Kamm RD. Biomaterials, 2014. 35 (8):2454-2461
                4. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, Kamm RD. Proc. Natl. Acad. Sci. USA, 2015. 112 (1):214-219
                5. Neutrophils suppress intraluminal NK-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Spiegel A, Brooks MW, Houshyar S, Reinhardt F, Ardolino M, Fessler E, . . . Weinberg RA. Cancer Discov., 2016. 6 (6):630-649
                6. Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Penny HL, Sieow JL, Adriani G, Yeap WH, See Chi Ee P, San Luis B, . . . Wong SC. OncoImmunology, 2016. 5 (8):e1191731
                7. ?On-chip human microvasculature assay for visualization and quantitation of tumor cell extravasation dynamics. Chen MB, Whisler JA, Fr?se J, Yu C, Shin YJ and Kamm RD. Nat Protoc. 2017 May; 12(5): 865–880.
                ?

                2.3. Intravasation

                1. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD. Proc. Natl. Acad. Sci. USA, 2012. 109 (34):13515-13520
                ?

                2.4. Flow Response

                1. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Polacheck WJ, Charest JL, Kamm RD. Proc. Natl. Acad. Sci. USA, 2011. 108 (27):11115-20
                2. Mechanotransduction of fluid stresses governs 3D cell migration. Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD. Proc. Natl. Acad. Sci. USA, 2014. 111 (7):2447-2452
                ?

                2.5. Invasion and Migration

                1. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Chung S, Sudo R, Mack PJ, Wan CR, Vickerman V, Kamm RD. Lab Chip, 2009. 9 (2):269-275
                2. Concentration gradients in microfluidic 3D matrix cell culture systems. Zervantonakis I, Chung S, Sudo R, Zhang M, Charest J, Kamm R. International Journal of Micro-Nano Scale Transport, 2010. 1 (1):27-36
                3. A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment. Funamoto K, Zervantonakis IK, Liu Y, Ochs CJ, Kim C, Kamm RD. Lab Chip, 2012. 12 (22):4855-4863
                4. Hydrogels: Extracellular Matrix Heterogeneity Regulates Three-Dimensional Morphologies of Breast Adenocarcinoma Cell Invasion. Shin Y, Kim H, Han S, Won J, Jeong HE, Lee E-S, . . . Chung S. Advanced Healthcare Materials, 2013. 2 (6):920-920
                5. A three-dimensional microfluidic tumor cell migration assay to screen the effect of anti-migratory drugs and interstitial flow. Kalchman J, Fujioka S, Chung S, Kikkawa Y, Mitaka T, Kamm RD, . . . Sudo R. Microfluid. Nanofluid., 2013. 14 (6):969-981
                6. Breast Cancer Cell Invasion into a Three Dimensional Tumor-Stroma Microenvironment. Truong D, Puleo J, Llave A, Mouneimne G, Kamm RD, Nikkhah M. Sci. Rep., 2016. 6:34094
                7. Macrophage-secreted TNFα and TGFβ1 Influence Migration Speed and Persistence of Cancer Cells in 3D Tissue Culture via Independent Pathways. Li R, Hebert JD, Lee TA, Xing H, Boussommier-Calleja A, Hynes RO, . . . Kamm RD. Cancer Res., 2016. 77 (2):279-290
                8. *MBNL1 alternative splicing isoforms play opposing roles in cancer. Tabaglio T, Low DHP, Teo WKL, Goy PA, Cywoniuk P, Wollmann H... Guccione E. Life Science Alliance, Sept 2018 doi:10.26508/lsa.201800157
                ?

                2.6. Testing New Therapeutic Approaches

                1. Engineering a 3D microfluidic culture platform for tumor-treating field application. Pavesi A, Adriani G, Tay A, Warkiani ME, Yeap WH, Wong SC, Kamm RD. Sci. Rep., 2016. 6:26584
                2. *Assessing Therapeutic Efficacy of MEK Inhibition in a KRASG12C-Driven Mouse Model of Lung Cancer. Li S, Liu S, Deng J, Akbay EA, Hai J, Ambrogio C ... Wong KK. Clinical Cancer Research 2018 doi: 10.1158/1078-0432.CCR-17-3438
                ↑ Back to the top

                3. Immunotherapy

                1. *?A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors. Pavesi A, Tan AT, Koh S, Chia A, Colombo M, Antonecchia E, Miccolis C, Ceccarello E, Adriani G, Raimondi MT, Kamm RD, Bertoletti A. JCI Insight. 2017 Jun 15;2(12). pii: 89762. doi: 10.1172/jci.insight.89762.
                2. *Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Jenkins RW, Aref AR, Lizotte PH, Ivanova E, Stinson S, Zhou CW, ... Barbie DA. Cancer Discov. 2017 Nov 3. pii: CD-17-0833. doi: 10.1158/2159-8290.CD-17-0833.
                3. *CDK4/6 Inhibition Augments Anti-Tumor Immunity by Enhancing T Cell Activation. Deng J, Wang ES, Jenkins RW, Li S, Dries R, Yates K, ... Wong KK. Cancer Discov. 2017 Nov 3. pii: CD-17-0915. doi: 10.1158/2159-8290.CD-17-0915.
                4. Characterizing the Role of Monocytes in T Cell Cancer Immunotherapy Using a 3D Microfluidic Model. Lee SWL, Adriani G, Ceccarello E, Pavesi A, Tan AT, Bertoletti A, Kamm RD and Wong SC (2018) Front. Immunol. 9:416. doi: 10.3389/ mmu.2018.00416
                5. *Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Ca?adas I, Thummalapalli R, Kim JW, Kitajima S, Jenkins RW, Christensen CL... Barbie DA. Nature Medicine 23 July 2018 doi.org/10.1038/s41591-018-0116-5
                6. *Molecular recalibration of PD-1+ antigen-specific T cells from blood and liver. Otano I, Escors D, Schurich A, Singh H, Robertson F, Davidson BR... Maini MK. Molecular Therapy (2018), doi: 10.1016/j.ymthe.2018.08.013.
                7. *3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade. Aref AR, Campisi M, Ivanova E, Portell A, Larios D, Piel BP... Jenkins RW. Lab on a Chip, 2018, DOI: 10.1039/C8LC00322J
                ↑ Back to the top

                4. Neurobiology

                1. A high-throughput microfluidic assay to study neurite response to growth factor gradients. Kothapalli CR, van Veen E, de Valence S, Chung S, Zervantonakis IK, Gertler FB, Kamm RD. Lab Chip, 2011. 11 (3):497-507
                2. A microfluidic device to investigate axon targeting by limited numbers of purified cortical projection neuron subtypes. Tharin S, Kothapalli CR, Ozdinler PH, Pasquina L, Chung S, Varner J, . . . Macklis JD. Integr. Biol., 2012. 4 (11):1398-1405
                3. Three-dimensional extracellular matrix-mediated neural stem cell differentiation in a microfluidic device. Han S, Yang K, Shin Y, Lee JS, Kamm RD, Chung S, Cho SW. Lab Chip, 2012. 12 (13):2305-2308
                4. A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as blood-brain barrier. Adriani G, Ma DL, Pavesi A, Kamm R, Goh ELK. Lab Chip, 2016. 17 (3):448-459
                5. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Campisi M, Shin YJ, Osaki T, Hajal C, Chiono V, Kamm RD. Biomaterials 2018 https://doi.org/10.1016/j.biomaterials.2018.07.014

                ↑ Back to the top

                5. Stem Cell Biology

                5.1. Differentiation of Embryonic Stem Cells

                1. Differentiation of embryonic stem cells into cardiomyocytes in a compliant microfluidic system. Wan CR, Chung S, Kamm RD. Ann. Biomed. Eng., 2011. 39 (6):1840-1847
                2. Simultaneous or Sequential Orthogonal Gradient Formation in a 3D Cell Culture Microfluidic Platform. Uzel SGM, Amadi OC, Pearl TM, Lee RT, So PTC, Kamm RD. Small, 2016. 12 (5):612-622
                ?

                5.2. Electrical and Mechanical Stimulation of Mesenchymal Stem Cells

                1. Controlled electromechanical cell stimulation on-a-chip. Pavesi A, Adriani G, Rasponi M, Zervantonakis IK, Fiore GB, Kamm RD. Sci. Rep., 2015. 5:11800
                ↑ Back to the top

                6. ?Mechanobiology

                6.1. Mechanical stimulation of Cardiac Fibroblasts

                1. On-chip assessment of human primary cardiac fibroblasts proliferative responses to uniaxial cyclic mechanical strain. Ugolini GS, Rasponi M, Pavesi A, Santoro R, Kamm R, Fiore GB, . . . Soncini M. Biotechnol. Bioeng., 2016. 113 (4):859-869
                ?

                6.2. Optically Excitable Motor Units

                1. Microfluidic device for the formation of optically excitable, three-dimensional, compartmentalized motor units. Uzel SGM, Platt RJ, Subramanian V, Pearl TM, Rowlands CJ, Chan V, . . . Kamm RD. Science Advances, 2016. 2 (8)
                ↑ Back to the top

                ?7. Other Models

                7.1. Environmental Assessment

                1. *Functional human 3D microvascular networks on a chip to study the procoagulant effects of ambient fine particulate matter. Li Y, Pi QM, Wang PC, Liu LJ, Han ZG, Shao Y, Zhai Y, Zuo ZY, Gong ZY, Yang X, Yang W. RSC Adv., 2017, 7, 56108–56116
                2. *Protein corona of airborne nanoscale PM2.5 induces aberrant proliferation of human lung fibroblasts based on a 3D organotypic culture. Li Y, Wang PC, Hu CL, Wang K, Chang Q, Liu LJ, Han ZG, Shao Y, Zhai Y, Zuo ZY, Gong ZY, Wu Y. Scientific Reports volume 8, Article number: 1939(2018) doi:10.1038/s41598-018-20445-7
                ↑ Back to the top

                8. Reviews

                1. Microfluidic Platforms for Studies of Angiogenesis, Cell Migration, and Cell–Cell Interactions. Chung S, Sudo R, Vickerman V, Zervantonakis IK, Kamm RD. Ann. Biomed. Eng., 2010. 38 (3):1164-1177
                2. Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. Zervantonakis IK, Kothapalli CR, Chung S, Sudo R, Kamm RD. Biomicrofluidics, 2011. 5 (1)
                3. Microfluidic models of vascular functions. Wong KHK, Chan JM, Kamm RD, Tien J. 2012. 14:205-230
                4. Tumor cell migration in complex microenvironments. Polacheck WJ, Zervantonakis IK, Kamm RD. Cell. Mol. Life Sci., 2013. 70 (8):1335-1356
                5. Microfluidic platforms for mechanobiology. Polacheck WJ, Li R, Uzel SGM, Kamm RD. Lab Chip, 2013. 13 (12):2252-2267
                6. Creating living machines. Kamm RD, Bashir R. Ann. Biomed. Eng., 2014. 42 (2):445-459
                7. In vitro models of the metastatic cascade: from local invasion to extravasation. Bersini S, Jeon JS, Moretti M, Kamm RD. Drug Discov. Today, 2014. 19 (6):735-742
                8. Microfabrication and microfluidics for muscle tissue models. Uzel SGM, Pavesi A, Kamm RD. Progress in Biophysics and Molecular Biology, 2014. 115 (2–3):279-293
                9. Single-Cell Migration in Complex Microenvironments: Mechanics and Signaling Dynamics. Mak M, Spill F, Kamm RD, Zaman MH. J. Biomech. Eng., 2016. 138 (2):021004-021004-8
                10. Impact of the physical microenvironment on tumor progression and metastasis. Spill F, Reynolds DS, Kamm RD, Zaman MH. Curr. Opin. Biotechnol., 2016. 40:41-48
                11. Microfluidics: A New Tool for Modeling Cancer-Immune Interactions. Boussommier-Calleja A, Li R, Chen MB, Wong SC, Kamm RD. Trends in Cancer. 2 (1):6-19
                12. Microfluidic models for adoptive cell-mediated cancer immunotherapies. Adriani G, Pavesi A, Tan AT, Bertoletti A, Thiery JP, Kamm RD. Drug Discov. Today, 2016. 21 (9):1472-1478
                13. M2a macrophages induce contact-dependent dispersion of carcinoma cell aggregates. Adriani G, Bai J, Wong SC, Kamm RD, Thiery JP. Macrophage, 2016. 3:e1222

                 

              在找 aimbiotech 3D培養芯片 產品的人還在看
              返回首頁 產品對比

              提示

              ×

              *您想獲取產品的資料:

              以上可多選,勾選其他,可自行輸入要求

              個人信息:

              Copyright gkzhan.com , all rights reserved

              智能制造網-工業4.0時代智能制造領域“互聯網+”服務平臺

              對比欄



              亚洲视频1区,国产精品久久久久9999赢消,亚洲天堂黄,亚洲视频二区,国产丝袜不卡一区二区,天天操中文字幕,久久伊人中文字幕,国产精品一区二区电影,国产午夜久久精品,日韩激情中文字幕一区二区
              亚洲精品天堂 91成人国产 国产天堂在线观看 亚洲国产精品91 久久久亚洲欧美综合 亚洲综合在线观看一区www 亚洲精品在线免费看 国产精品黄在线观看观看 99国产精品久久久久久久... 日韩欧美亚洲国产精品字幕久久久 国产99久久久国产精品免费直播 亚洲人成综合在线播放 国产精品视频播放 国产精品免费久久 亚洲精品乱码国产精品乱码 日韩精品一区二区三区视频网 欧美精品黄页在线观看视频 亚洲国产精品一区二区三区 国产精品自在线拍 日韩精品亚洲人成在线观看 中文字幕久久综合伊人 国产精品免费久久久久影院 欧美成人二区 亚洲水蜜桃久久综合网站 亚洲人成网站999久久久综合 日韩高清不卡在线 国产精品久久久久久免费播放 国产成人在线小视频 制服丝袜一区二区三区 久久不卡精品 91久久免费视频 日韩在线不卡视频 国产在线麻豆波多野结衣 国产精自产拍久久久久久 麻豆亚洲一区 亚洲精品美女在线观看 日韩成人免费aa在线看 91成人国产 综合久久久久久 91精品国产91久久 日韩国产欧美在线观看 欧美精品久久一区二区三区 欧美激情综合亚洲一二区 色视频一区二区三区 91精品国产91久久久久久麻豆 国产成人综合手机在线播放 免费在线观看视频a 午夜免费小视频 在线观看免费黄网站 欧美激情综合亚洲五月蜜桃 国产精品欧美一区喷水 亚洲日本欧美日韩精品 91精选视频在线观看 国产综合福利 亚洲日本中文字幕区 亚洲国产第一页 免费在线观看视频a 久久97超级碰碰碰 99久久综合狠狠综合久久男同 日本免费久久 日韩高清毛片 亚洲精品国产字幕久久不卡 久久伊人影视 中文字幕在线不卡视频 国产成人精品亚洲一区 久久99国产综合色 亚洲精品美女久久久久99 国产精品久久久久乳精品爆 亚洲一区二区影视 精品欧美一区二区精品久久 欧美精品91 国产精品一国产精品 日韩精品免费观看 激情亚洲综合网 91精品视频免费观看 日韩精品福利在线 国产午夜精品久久理论片小说 国产精品欧美在线 一区视频在线播放 欧美不卡二区 国产成人精品综合在线 亚洲视频99 日韩欧美综合在线 亚洲一区二区三区在线播放 国产三级精品视频 亚洲精品国产乱码在线播 日韩精品大片 亚洲精品亚洲人成在线麻豆 91精品国产91久久久久久青草 日韩精品一区二区在线观看 国产综合亚洲欧美日韩一区二区 国产精品视频h 日韩成人精品日本亚洲 亚洲日本欧美日韩精品 99精品国产福利免费一区二区 亚洲视频一区在线观看 99久久婷婷国产综合精品电影 亚洲精品永久免费 亚洲精品亚洲人成在线 亚洲精品国产高清嫩草影院 久久91这里精品国产2020 成人综合久久精品色婷婷 亚洲色图久久 国产精品视频久久久久 91精品国产手机在线版 亚洲性无码av在线 国产午夜久久影院 91精品国产免费入口 亚洲天堂视频在线免费观看 亚洲精品中文字幕不卡在线 亚洲无吗视频 精品欧美一区二区精品久久 国产精品正在播放 国产成人综合久久 免费视频毛片 国产最新视频 91精品一区二区三区在线 国产精品视频99 久久93精品国产91久久综合 午夜在线视频一区二区三区 国产精品女上位好爽在线短片 成人免费视频一区二区 午夜伊人网 国产精品视频久久久久 精品国产自在现线看久久 91精品啪在线观看国产 99国产在线观看 日韩va亚洲va欧美va浪潮 日韩美女一区 亚洲人成黄网在线观看 视频二区国产 国产丝袜久久 91精品福利视频 免费视频一区二区性色 91精品国产综合久久婷婷 欧美精品久久一区二区三区 日韩精品免费观看 国产精品亚洲精品 国产精品免费久久久久影院 亚洲天堂资源 亚洲精品国产精品乱码不97 国产精品亚洲精品 国产成人午夜精品免费视频 欧美激情国产日韩精品一区18 久久午夜精品 亚洲精品国产电影 日韩高清毛片 亚洲人成在线播放网站 国产视频福利 99国产成人高清在线视频 国产精品久久久久久久y 伊人中文字幕在线观看 91精品国产调教在线观看 亚洲精品性夜夜夜 免费视频毛片 亚洲天堂成人在线观看 亚洲天堂久久精品 999精品免费视频 91精品国产91久久 日韩国产综合 色www永久免费网站国产 国产99精品 曰曰摸天天摸人人看久久久 国产成人在线综合 91精品视频免费观看 精久久 亚洲视频国产精品 免费在线视频a 久久综合色综合 国产精品一区二区av 国产精品久久免费观看 99国产精品 99久久婷婷国产综合精品电影 国产视频91在线 五月婷婷综合在线 国产99免费视频 成人不卡视频 国产视频一区二区在线观看 亚洲一区二区久久 中文字幕在线不卡精品视频99 日韩在线观看精品 国产精品视频九九九 亚洲国产清纯 91精品国产入口 免费香蕉一区二区在线观看 日韩免费一区二区 亚洲天堂网2014 国产精品天堂avav在线 亚洲精品国产免费 国产一区二区三区久久小说 自拍亚洲一区 国产3344永久在线观看视频 五月婷婷综合在线 国产l精品国产亚洲区久久 久久不卡精品 亚洲精品乱码在线观看 亚洲精品欧洲精品 亚洲视频一区二区三区四区 日韩高清一区二区 国产精品黄网站免费进入 国产污网站 国产午夜免费 国产一区二区三区久久小说 精品欧美一区二区在线看片 欧美激情一区二区三区 日韩精品导航 国产精品综合 色视频www在线播放国产人成 欧美精品国产一区二区 在线观看国产区 亚洲精品无播放器在线看观看 九九热视频免费 在线观看免费黄网站 日韩经典一区 免费在线观看一级片 91精品成人国产app下载 国产精品久久毛片 亚洲天堂成人 亚洲人成网站在线观看90影院 国产精品久久久久久免费播放 国产精品久久久久久久久久影院 欧美国产综合视频在线观看 国产精品久久国产精品99 色婷婷香蕉 国产精品亚洲欧美 精品国产自 成人精品国产亚洲 日韩不卡免费视频 国产精品久久久久免费a∨ 国产成人精品一区二区三区 亚洲精品手机在线观看 亚洲人成黄网在线观看 国产在线观看精品 91精品一区二区三区久久久久 欧美精品v国产精品v 日韩精品在线一区 国产成人一区 国产精品视频一区二区三区经 91成人国产 成人久久18免费网站 福利在线一区二区 日韩精品一区在线 欧美激情一区二区三区视频 亚洲精品综合久久中文字幕 国产亚洲美女精品久久久久狼 99ri精品国产亚洲 91精品国产免费入口 色综合色综合色综合 亚洲精品福利在线观看 久久最新免费视频 91精品久久久久含羞草 正在播放国产一区 日韩高清一区二区 日韩国产第一页 中文字幕亚洲一区 欧美精品91 亚洲精品三区 国产精品久久久久久久伊一 日韩久久久精品中文字幕 亚洲人成一区 国产成人在线视频网站 国产九九热视频 狠狠色婷婷狠狠狠亚洲综合 久久综合色综合 亚洲精品午夜在线观看 国产曰批免费视频播放免费s 亚洲视频中文 国产精品亚洲综合色区韩国 自拍偷自拍亚洲精品10p 国产丝袜在线视频 日韩免费毛片 国产精品亚洲一区二区三区正片 免费国产福利 国产精品一国产精品 日韩精品成人在线 国产成人啪一区二区 日韩乱码视频 免费视频a 伊人色强在线网 国产精品中文字幕在线 午夜精品成人毛片 亚洲天堂资源 国产成人一区 亚洲视频1区 国产视频一区二区在线播放 日韩精品亚洲人成在线播放 亚洲精品乱码久久久久久蜜桃 91精品电影 伊人成人久久 国产精品久久一区 国产精品自在线拍 精品成人乱色一区二区 国产九九视频在线观看 91精品国产手机在线版 国产丝袜福利 天天操中文字幕 日韩h网站 日韩精品中文字幕一区三区 国产精品模特hd在线 91久久精品国产91久久性色tv 亚洲人成亚洲人成在线观看 国产成人亚洲综合一区 国产精品久久久久久久久久妇女 欧美激情综合亚洲一二区 国产永久在线观看 国产天天在线 日韩成人免费观看 亚洲国产欧美在线 亚洲视频在线网站 日韩国产成人资源精品视频 亚洲日本一区二区三区在线 日韩视频导航 亚洲日韩欧美综合 99爱精品 中文字幕欧美一区 免费一区在线 在线观看国产麻豆 日韩精品成人 色视频一区二区三区 日韩精品中文字幕一区二区三区 91久久免费视频 视频二区国产 91精品啪在线观看国产 国产视频一区二 国产综合亚洲专区在线 国产视频不卡在线 国产一区高清 在线99视频 亚洲天堂资源 欧美激情综合亚洲五月蜜桃 国产精品久久免费观看 国产精品青草久久久久婷婷 国产精品综合网 91精品久久久久含羞草 亚洲一区免费看 91九色在线视频 99久久精品国内 亚洲日本欧美在线 99国产精品视频免费观看 国产91精品久久久久久久 视频亚洲一区 国产精品精品国产一区二区 亚洲精品福利你懂 99国产国人青青视频在线观看 色综合久久九月婷婷色综合 亚洲国产欧美亚洲gif动图 国产成人在线网站 国产视频99 日韩成人免费观看 91精品国产亚一区二区三区 国产九九热 亚洲视频在线精品 免费国产午夜高清在线视频 欧美激情一区二区 99精品网 亚洲精品亚洲人成在线观看麻豆 日本久久综合网 国产综合亚洲专区在线 精品久 91精品久久久久久久99蜜桃 亚洲视频第二页 亚洲天堂久 国产天天操 免费在线视频a 日韩精品一区二区在线观看 国产成人在线小视频 91精品国产综合久久婷婷 国产日韩欧美综合在线 999国产精品亚洲77777 在线色国产 亚洲国产精品久久久久久 国产v在线 亚洲人成在线播放 麻豆亚洲一区 国产不卡一区二区视频免费 日韩精品一区二区三区视频网 国产成人精品亚洲一区 亚洲精品高清国产一线久久97 免费在线一级片 国产精品黄网站免费观看 亚洲精品系列 国产天天在线 日韩精品在线视频观看 亚洲天堂热 91精品一区二区三区在线播放 亚洲一区在线播放 日本欧美一区二区三区在线 日韩精品999 亚洲一区二区三 亚洲精品国产综合一线久久 欧美激情二区三区 色偷偷888欧美精品久久久 日韩精品亚洲专区在线影视 久久91精品国产91久久户 在线观看a国v 日韩不卡中文字幕 亚洲人成在线观看 国产精品久久久久aaaa 99国内精品久久久久久久 99久久精品国产综合一区 国产在线日韩 制服丝袜日韩欧美 伊人宗合网 国产色婷婷精品免费视频 国产色综合久久无码有码 国产精品入口麻豆 国产成人精品一区二区免费视频 国产精品视频h 欧美精品超清在线播放 国产精品久久久久影院色老大 亚洲国产最新 久久99久久精品毛片免费观看 成人a网站 国产成人在线视频网站 国产精品久久99 亚洲日韩欧美一区二区在线 亚洲精品人成网在线播放影院 自拍三区播 99爱国产 中文字幕91在线 国产成人综合欧美精品久久 国产在线99 丁香五月欧美成人 国产精品亚洲欧美 亚洲精品福利在线观看 中文字幕一区二区三区久久网站 国产成人精品在线 国产精品日韩欧美 久久99精品久久久久久国产越南 成人欧美精品一区二区不卡 免费国产高清精品一区在线 国产精品久久久久久免费 天天操中文字幕 国产不卡在线视频 国产视频97 亚洲视频一区二区三区四区 免费伊人网 日韩中文一区 在线视频一区二区三区 91精品国产免费青青碰在线观看 午夜在线不卡 亚洲视频中文 国产成人尤物精品一区 免费色网址 久久99精品国产麻豆不卡 亚洲一区免费看 亚洲精品国产高清不卡在线 亚洲精品一二三区 精品国产免费人成高清 日韩在线观看精品 国产精品久久久精品三级 中文字幕亚洲一区二区三区 亚洲视频99 国产精品日韩欧美久久综合 日韩亚洲欧美一区二区三区 国产色综合久久无码有码 亚洲人成网站999久久久综合 国产成人一区二区 亚洲一区二区三区在线播放 亚洲永久精品唐人导航网址 亚洲精品色婷婷在线影院麻豆 国产一区二区三区美女图片 亚洲视频中文字幕在线观看 亚洲一区二区三 亚洲精品自拍区在线观看 免费国产一区 国产精品视频h 国产精品久久久久久久久久影院 麻豆一级片 国产成人免费观看 免费在线一区二区三区 亚洲精品午夜级久久久久 国产精品视频九九九 91精品一区二区三区在线观看 国产一区成人 亚洲婷婷第一狠人综合精品 制服丝袜第三页 国产精品青草久久久久婷婷 亚洲视频一二三 国产精品中文字幕在线 国产精品一区二区久久精品涩爱 91久久国产综合精品女同我 国产精品正在播放 亚洲精品中文字幕无码专区 亚洲视频四区 999精品免费视频 日韩精品一区二区三区视频网 亚洲视频一区在线播放 国产成人青草视频 日韩精品亚洲人成在线播放 亚洲精品国产精品国自产 亚洲无卡 日韩精品在线一区 免费av一区二区三区 91九色在线播放 国产成人综合手机在线播放 亚洲三级天堂 久久er热这里只有精品免费 国产精品黄网站免费进入 日韩在线观看精品 91精品国产麻豆91久久久久久 欧美亚洲国产成人不卡 亚洲人成在线观看 亚洲天堂成人在线观看 亚洲精品国产成人7777 伊人中文字幕在线观看 免费日韩精品 国产网站在线播放 国产在线看不卡一区二区 视频二区国产 日韩不卡中文字幕 国产精品久久久久jk制服 色偷偷久久一区二区三区 国产精品综合 欧美精品手机在线 99精品国产成人a∨免费看 国产精品久久久久久吹潮 999精品视频 亚洲国产欧美在线 国产亚洲自拍一区 国产精品视频久久 国产精品视频九九九 麻豆亚洲一区 国产成人免费观看 国产精品久久久久久免费 亚洲天堂资源 日韩h网站 欧美国产综合视频在线观看 91精品国产综合成人 5566中文字幕亚洲精品 日韩精品一区二区在线观看 免费国产一区 免费国产午夜在线观看 国产成人精品在线 国产精品亚洲第一区二区三区 国产成人精品综合 视频二区国产 国产成人一区 色婷婷5月精品久久久久 亚洲国产成人久久精品app 999国产精品999久久久久久 日韩精品国产精品 国产精品无码制服丝袜 国产精品系列在线观看 视频二区国产 91精品一区二区三区在线 日韩视频导航 国产精品久久久久久久久久影院 制服丝袜护士久久久久久 亚洲国产精品91 亚洲精品国产综合一线久久 国产成人亚洲精品乱码在线观看 免费视频成人国产精品网站 国产精品免费一区二区三区 亚洲天堂小视频 国产亚洲一区呦系列 国产精品日本一区二区在线播放 综合久久久久久久 久久不卡精品 亚洲视频天堂 日本免费一区二区三区中文字幕 亚洲视屏一区 国产精品视频麻豆 91精品视频在线免费观看 国产在线观看青草视频 免费在线一区二区三区 国产精品无码久久综合网 亚洲精品美女久久久aaa 精品国产91在线网 国产视频1区 亚洲视频一区二区 亚洲一区二区三区免费在线观看 亚洲视频在线一区二区 99久久精品国产综合一区 国产成人亚洲精品77 国产在线99 国产精品久久久精品视频 日韩经典一区 亚洲国产日韩欧美综合久久 中文字幕久热 五月天国产精品 亚洲视频一区二区三区 亚洲视频第二页 亚洲精品在线免费观看 国产成人精品自拍 色婷婷亚洲十月十月色天 国产视频不卡在线 欧美精品观看 国产精品久久久久久久久福利 色中文在线 国产成人精品午夜 91精品久久 午夜精品久久久久久久99热 国产a精品 99久久这里只有精品 日韩亚洲欧美一区二区三区 麻豆一级片 亚洲一区在线播放 999精品久久久中文字幕蜜桃 日韩成人中文字幕 国产午夜久久精品 亚洲精品二区中文字幕 亚洲国产第一页 91精品视频在线免费观看 亚洲国产日韩欧美综合久久 日韩精品一 国产精品欧美日韩一区二区 国产成人久久精品激情 国产综合在线观看视频 91久久免费视频 99精品福利视频 日韩精品麻豆 中文字幕91在线 91精品视频网站 在线观看亚洲一区二区 日韩国产综合 成人a网站 国产午夜偷精品偷伦 99久久这里只有精品 色视频www在线播放国产人成 在线免费色 亚洲精品国产电影 制服丝袜中文 国产无人区一区二区三区 亚洲人成在线观看 亚洲日本欧美日韩精品 国产亚洲综合在线 国产成人综合在线视频 亚洲人成绝费网站色ww 国产精品久久久久久一级毛片 色五月激情五月 亚洲精品福利视频 日韩精品中文字幕在线观看 国产在线观看91 九九国产视频 999精品视频 蜜桃精品免费久久久久影院 在线免费色 国产精品日韩欧美一区二区三区 91精品在线免费视频 亚洲视频在线网站 九九99九九在线精品视频 91精品一区二区三区久久久久 亚洲三区视频 在线色国产 国产精品欧美一区二区三区不卡 亚洲精品美女在线观看播放 亚洲精品中文字幕无码专区 国产精品日本一区二区在线播放 久青草国产在线 亚洲视频1区 日韩精品亚洲人成在线播放 亚洲日本中文字幕区 日韩精品一区二区三区中文字幕 日韩国产欧美一区二区三区 国产成人综合手机在线播放 国产不卡在线视频 亚洲精品欧洲精品 亚洲精品日本高清中文字幕 国产精品久久免费 成人中文在线 成人精品国产亚洲欧洲 欧美精品国产一区二区 亚洲综合在线观看一区www 91久久精品视频 国产精品免费综合一区视频 亚洲精品另类 国产网站在线播放 激情亚洲综合网 亚洲日本中文字幕区 国产精品综合 亚洲精品国产高清不卡在线 亚洲精品在线免费观看视频 亚洲三级一区 91精品国产综合久久婷婷 亚洲天堂久久新 国产精品一区不卡 国产视频一区在线播放 国产不卡在线视频 日韩激情中文字幕一区二区 日韩视频导航 久久综合丁香激情久久 日本久久综合视频 国产成人亚洲欧美激情 91精品国产自产91精品 久久伊人中文字幕 欧美激情国产日韩精品一区18 亚洲精品国产第1页 91精品国产一区二区三区左线 91精品国产一区二区三区左线 99成人在线观看 日韩高清一区二区 国产精品久久国产精麻豆99网站 国产午夜免费不卡精品理论片 国产精品一区二区久久沈樵 国产成人一区二区三区视频免费 99国产成人高清在线视频 国产精品久久国产精麻豆99网站 日韩精品成人 国产婷婷色一区二区三区 国产精品久久久久乳精品爆 亚洲天堂免费观看 久久91精品国产99久久yfo 色婷婷5月精品久久久久 五月综合在线 亚洲视频在线网站 亚洲一级视频在线观看 国产不卡在线蜜 亚洲水蜜桃久久综合网站 91精品一区二区三区久久久久 亚洲一区二区三区免费在线观看 国产精品久久久久9999赢消 日韩成人国产精品视频 国产精品亚洲欧美日韩久久 国产v片免费播放 亚洲精品乱码久久久久久中文字幕 欧美精品不卡 国产午夜毛片v一区二区三区 999精品视频在线 亚洲丝袜在线观看 selao久久国产精品 日韩精品电影在线 国产成人一区 一区二区3区免费视频 日韩激情无码免费毛片 日韩久久免费视频 国产成人在线观看网站 亚洲国产欧美日韩 精品久久久久久久九九九精品 免费亚洲成人 亚洲三区视频 精品国产免费人成高清 日韩a无吗一区二区三区 亚洲天堂成人 免费国产成人 亚洲精品午夜级久久久久 欧美精品国产 国产成人亚洲日本精品 日韩精品电影在线 国产一区高清视频 怡春院怡红院一级毛片 国产成人悠悠影院 日韩a无吗一区二区三区 91精品国产一区 国产视频久久久 亚洲视频99 免费国产午夜高清在线视频 亚洲精品国产高清不卡在线 国产亚洲福利精品一区 91精品成人免费国产 国产v片免费播放 亚洲精品欧美在线 91国在线啪精品一区 日韩不卡视频在线 成人久久精品 日本久久中文字幕 日韩高清一区二区 国产婷婷 国产精品中文字幕在线观看 国产微拍一区二区三区四区 国产视频第二页 国产网站在线播放 91精品国产入口 亚洲人成网站色在线观看 亚洲天堂久久精品成人 综合久久久久久 色综合精品久久久久久久 亚洲人成网站在线播放942一 日韩在线网址 91精品观看91久久久久久 亚洲人成在线播放网站 国产精品视屏 亚洲精品亚洲人成在线 国产成人综合欧美精品久久 综合色网站 狠狠色婷婷狠狠狠亚洲综合 91精品一区二区三区久久久久 国产精品视频无圣光一区 国产精品欧美日韩 精品欧美一区二区三区免费观看 伊人宗合 国产不卡视频在线观看 久久99国产视频 亚洲人成在线播放网站 国产色婷婷精品免费视频 亚洲一区二区三 亚洲视频国产 欧美精品首页 色综合久久久久久中文网 国产精品久久久久免费a∨ 国产日韩在线视频 99爱国产 亚洲精品区 国产a不卡 91精品国产亚洲爽啪在线观看 亚洲精品在线影院 波多野结衣中文字幕一区二区 亚洲精品在线播放视频 91精品国产麻豆91久久久久久 国产成人精品亚洲一区 99久久免费看国产精品 免费国产午夜在线观看 日韩a无吗一区二区三区 日韩精品一区在线 国产精品欧美在线 国产精品视频专区 亚洲精品国产精品国自产 国产精品久久久久jk制服 蜜桃精品免费久久久久影院 国产精品久久久久国产精品 999精品视频在线 免费伊人网 91久久精品一区二区三区 免费色网址 日韩男人的天堂 国产日韩欧美在线播放 亚洲制服丝袜在线观看 91久国产在线观看 91精品中文字幕 91精品一区二区三区在线播放 亚洲精品美女久久久aaa 91精品国产91久久 国产精品入口在线看麻豆 日韩高清毛片 亚洲色图久久 国产精品日韩欧美一区二区 国产色婷婷精品综合在线 一区视频在线播放 国产一区美女视频 亚洲自拍偷拍区 精品国产91在线网 午夜欧美精品久久久久久久久 亚洲精品天堂在线 亚洲精品高清国产一久久 国产va免费精品观看 亚洲视频入口 日韩高清一区二区 亚洲精品美女在线观看 在线视频91 国产精品男人的天堂 亚洲精品欧洲久久婷婷99 伊人国产视频 91久久精品国产免费一区 欧美精品国产一区二区三区 国产精品青草久久久久婷婷 99久久精品国产综合一区 日韩精品一区在线 日韩精品亚洲人成在线播放 亚洲视频1区 一区二区精品久久 久久91精品久久久久久水蜜桃 天天插综合网 日韩精品一 色婷婷在线视频观看 国产精品久久久久久久久ktv 亚洲一区二区综合18p 国产精品视频二区不卡 国产天堂在线观看 91精品国产丝袜 国产精品一区视频 日韩中文字幕一区 日韩中文字幕网站 国产精品久久亚洲不卡动漫 日本欧美国产精品 午夜三级网 午夜国产精品视频 亚洲天堂精品视频 欧美激情国产日韩精品一区18 国产成人亚洲精品乱码在线观看 日韩精品电影在线 亚洲视频在线观看免费 国产精品久久国产精麻豆99网站 国产精品一页 91精品视品在线播放 国产精品久久久久久久hd 国产精品久久久久影院色老大 九九久久国产精品免费热6 国产精品模特hd在线 在线99视频 日韩综合久久 国产精品一区二区三区四区五区 亚洲日本欧美中文字幕001 国产综合亚洲专区在线 国产精品女上位在线观看 午夜在线不卡 免费在线观看视频a 91精品一区二区三区在线观看 欧美国产综合视频在线观看 国产成人啪一区二区 日韩亚洲综合精品国产 日韩国产免费一区二区三区 久久99这里只有精品 日韩不卡高清视频 久久91精品综合国产首页 国产无套在线播放 国产v片在线观看 精品国产自在现线看久久 国产精品久久久久影院色老大 99精品福利视频 日韩福利视频精品专区 一区二区精品久久 久久93精品国产91久久综合 日韩精品一区二区三区中文字幕 久久中文字幕日韩精品 国产91最新在线 亚洲性视频网站 国产精品入口麻豆 欧美极品在线 久久91精品国产91久 日韩国产第一页 欧美激情一区二区三区蜜桃视频 正在播放国产一区 亚洲丝袜制服欧美另类 91精品国产丝袜 日本久久99 国产成人自拍 国产精品久久久久久免费播放 日韩h网站 国产午夜精品理论片小yo奈 国产色综合一区二区三区 国产一区二区三区精品久久呦 99久久精品国产一区二区成人 日韩国产精品欧美一区二区 国产精品日韩欧美一区二区三区 999精品久久久中文字幕蜜桃 欧美成人一区二区三区在线电影 国产成人在线精品 国产精品中文字幕在线 99国产精品免费视频 国产精品日韩欧美一区二区三区 91精品国产麻豆91久久久久久 日韩国产午夜一区二区三区 成人久久久精品乱码一区二区三区 国产成人毛片亚洲精品不卡 亚洲精品影视 91精品久久久久久久99蜜桃 91精品成人国产app下载 亚洲视频99 在线免费色 国产精品视频一区二区三区经 国产精品一区久久 精品国产自在现线看久久 国产精品久久久久久免费播放 综合久久婷婷 伊人中文字幕在线观看 欧美成在线视频 五月天黄色网址 国产精品黄在线观看观看 亚洲精品网址 国产精品丝袜在线 伊人成人久久 国产婷婷色综合成人精品 亚洲一级毛片免费在线观看 99国产精品九九视频免费看 国产视频黄 91久久国产 国产成人免费在线观看 国产精品视频99 亚洲日本视频在线观看 国产成人综合一区精品 国产精品亚洲国产 国产精品久久二区三区色裕 成人久久久精品乱码一区二区三区 国产精品视频99 亚洲天堂手机在线 91极品蜜桃臀在线播放 日韩精品麻豆 国产精品天堂avav在线 亚洲精品在线免费观看视频 国产精品女上位好爽在线短片 色综合久久久久 中文字幕久久亚洲一区 亚洲精品在线免费观看视频 91国在线视频 91精品国产丝袜 91国在线视频 国产色婷婷精品综合在线 国产成人青草视频 亚洲精品乱码久久久久久中文字幕 91精品视频在线 国产精品男女 91精品国产免费自在线观看 国产午夜视频在线 亚洲三级天堂 狠狠五月深爱婷婷网免费 国产精品日韩在线观看 狠狠婷婷 日韩精品一区二区三区在线观看l 91精品福利手机国产在线 亚洲精品日韩专区在线观看 国产精品女上位在线观看 久久99久久精品免费思思 日韩精品福利在线 亚洲精品网址 免费日韩精品 一区二区网站在线观看 亚洲精品乱码蜜桃久久久 国产在线观看精品 国产精品黄在线观看观看 在线a免费观看