變頻電纜的結構包括三根主線絕緣線、三根零線絕緣線,在主線絕緣線和零線絕緣線外依次設置內繞包層、銅帶層、外繞包層和外護套層,形成3+3線芯結構,使電纜具有較強的耐電壓沖擊性,能經受高速頻繁變頻時的脈沖電壓,對變頻電器起到良好的保護作用。
變頻電纜主要用于變頻電源和變頻電機之間連接用的電纜,以及額定電壓1KV及以下的輸配電線路中,作輸送電能用。尤其適用于造紙、冶金、金屬加工、礦山、鐵路和食品加工等行業。
結構設計:電纜對稱性設計,對于1.8/3KW及以下變頻電機電纜,和對稱3+1芯和4芯電纜僅可用于主電源的輸入纜,但使用對稱結構電纜。變頻器與變頻電機問電纜均需采用對稱電纜結構,對稱電纜結構有3芯和3+3芯兩種,3+3芯電纜結構是將三大一小四芯絕緣線芯中第四芯(中性線芯)分解為三個截面較小的絕緣線芯,把三大三小線芯對稱成纜,對于6/10kV變頻電機電纜,該電纜結構與6/10kV普通電力電纜有所不同,普通電力電纜是將三根絕緣線芯采用銅帶屏蔽后成纜,而變頻電機電纜是由銅絲銅帶屏蔽后擠包分相護套,然后對稱成纜,對稱電纜結構由于導線的互換性,有更好的電磁相容性,對抑制電磁干擾起到一定的作用,能抵消高次諧彼中的奇次頻率,提高變頻電機電纜的抗干擾性,減少了整個系統中的電磁輻射。2.屏蔽結構的設計,1.8/3kV及以下變頻電機電纜的屏蔽一般采用總屏蔽,6/10kv變頻電機電纜屏蔽由分相屏蔽和總屏蔽構成,分相屏蔽一般可采用銅帶屏蔽或銅絲銅帶組合屏蔽。總屏蔽結構可采用銅絲銅帶組合屏蔽、銅絲編織屏蔽、銅帶屏蔽、銅絲編織銅帶屏蔽等,屏蔽層截面與主線芯截面按一定比例。此結構的屏蔽電纜可抗電磁感應、接地不良和電源線傳導干擾,減小電感,防止感應電動勢過大。屏蔽層既起到抑制電磁波對外發射的作用,又可作為短路電流的通道,能起到中性線芯的保護作用。6/10kV變頻電機電纜,考慮到電纜在使用過程中經常受到徑向外力作用,在電纜屏蔽層外增加鍍鋅鋼帶銷裝層(在屏蔽層和鋼帶銷裝層之間加隔離套)。鋼帶銷裝主要是作為電纜的徑向機械保護層,同時它也起到附加性總屏蔽作用,特別是鋼帶鎧裝和銅絲、銅帶屏蔽,是采用了兩種不同屏蔽材料,在電磁波屏蔽上起到一定的互補作用,屏蔽效果將更好.3.電纜電氣性能設計,1.8/3kV及以下變頻電機電纜電氣性能均按GB/Tl2706,2002標準設計。6/10kV變頻電機電纜在滿足GBT/l2706.2002標準外, 增加了電容和電感等電性能要求。根據變頻電機電纜的實際使用情況并參照GB/T 12706.
電線電纜行業是中國僅次于汽車行業的第二大行業,產品品種滿足率和國內均超過90%。在世界范圍內,中國電線電纜總產值已超過美國,成為世界上*大電線電纜生產國。伴隨著中國電線電纜行業高速發展,新增企業數量不斷上升,行業整體技術水平得到大幅提高。中國經濟持續快速的增長,為線纜產品提供了巨大的市場空間,中國市場強烈的力,使得世界都把目光聚焦于中國市場,在改革開放短短的幾十年,中國線纜制造業所形成的龐大生產能力讓世界刮目相看。隨著中國電力工業、數據通信業、城市軌道交通業、汽車業以及造船等行業規模的不斷擴大,對電線電纜的需求也將迅速增長,未來電線電纜業還有巨大的發展潛力。
BPYJVP、BPYJVP2、BPYJVPP2、BPYJVP3 、ZR-BPGGP..ZR-BPGGP2、ZR-BPGGPP2、ZR-BPGGP3、ZR-BPGVFP、ZR-BPGVFP2、ZR-BPGVFPP2、ZR-BPGVFP3 、ZR-BPYJVPP、ZR-BPVVPP、ZR-BPFFP、ZR-BPFFP2、ZR-BPFFPP2、ZR-BPFFP3、ZR-BPVVP、ZR-BPVVP2、ZR-BPVVPP2、ZR-BPVVP3、ZR-BPYJVP、ZR-BPYJVP2、ZR-BPYJVPP2、ZR-BPYJVP3 ..NH-BPGGP、NH-BPGGP2、NH-BPGGPP2、NH-BPGGP3、NH-BPGVFP、NH-BPGVFP2、NH-BPGVFPP2、NH-BPGVFP3 、NH-BPYJVPP、NH-BPVVPP、NH-BPFFP、NH-BPFFP2、NH-BPFFPP2、NH-BPFFP3、NH-BPVVP、NH-BPVVP2、NH-BPVVPP2、 NH-BPVVP3、NH-BPYJVP、NH-BPYJVP2、NH-BPYJVPP2、NH-BPYJVP3 ..ZRC-BPYJVPP、
變頻器與變頻電機問電纜均需采用對稱電纜結構,普通電力電纜是將三根絕緣線芯采用銅帶屏蔽后成纜,而變頻電機電纜是由銅絲銅帶屏蔽后擠包分相護套,然后對稱成纜,對稱電纜結構由于導線的互換性,有更好的電磁相容性,對抑制電磁干擾起到一定的作用,能抵消高次諧彼中的奇次頻率,提高變頻電機電纜的抗干擾性,減少了整個系統中的電磁輻射。變頻電機電纜屏蔽由分相屏蔽和總屏蔽構成,分相屏蔽一般可采用銅帶屏蔽或銅絲銅帶組合屏蔽。總屏蔽結構可采用銅絲銅帶組合屏蔽、銅絲編織屏蔽、銅帶屏蔽、銅絲編織銅帶屏蔽等,屏蔽層截面與主線芯截面按一定比例。此結構的屏蔽電纜可抗電磁感應、接地不良和電源線傳導干擾,減小電感,防止感應電動勢過大。屏蔽層既起到抑制電磁波對外發射的作用,又可作為短路電流的通道,能起到中性線芯的保護作用。6/10kV變頻電機電纜,考慮到電纜在使用過程中經常受到徑向外力作用,在電纜屏蔽層外增加鍍鋅鋼帶鎧裝層(在屏蔽層和鋼帶鎧裝層之間加隔離套)。鋼帶鎧裝主要是作為電纜的徑向機械保護層,同時它也起到附加性總屏蔽作用,特別是鋼帶鎧裝和銅絲、銅帶屏蔽,是采用了兩種不同屏蔽材料,在電磁波屏蔽上起到一定的互補作用,屏蔽效果將更好。電纜電氣性能設計變頻電機電纜電氣性能均電纜的主要制造工藝技求?在變頻電機電纜生產過程中,絕緣線芯擠包工序、成纜工序等是關鍵的工序。?絕緣線芯擠包工序絕緣線芯的質量將直接影響到電纜的電氣性能。關于變頻器的輸出與電纜長度關系的研究:變頻器主要用于交流電動機轉速調節,除了具有的調速性能之外,變頻器還有顯著的節能作用,是企業技術改造和產品更新換代的理想調速裝置。但是由于變頻器的自身輸出特性和電纜分布電容的耦合作用,限制了變頻器的輸出距離。原因分析
變頻器的輸出到電機的電纜長度受到很多因素的影響,這其中的原因主要有以下幾點:分布電容。所謂分布電容,就是指由非電容形態形成的一種分布參數。一般是指在印制板或其他形態的電路形式,在線與線之間、印制板的上下層之間形成的電容。而變頻器輸出距離受限的問題,和電纜的分布電容有密切關系,不只是電容器才有電容,實際上任何兩個絕緣導體之間都存在電容。例如導線之間,導線與大地之間,都是被絕緣層和空氣介質隔開的,所以都存在著電容通常情況下,這個電容值很小,電纜長度較短時,它的實際影響可以忽略不計,如果電纜很長或傳輸信號頻率很高時,就必須考慮分布電容的作用。在電纜遠距離敷設系統中,電纜的電容會表現的較為明顯,對控制回路產生一定的影響,甚至影響控制功能,特別是對于變頻器控制普通低壓電機的控制回路,故障較多表現為過流、起停失靈等現象,給生產和維護造成很大的安全隱患。由于輸出線上的分布電容和分布電感的共振產生浪涌電壓,將會疊加到輸出電壓上,晶體管的開關頻率越高,電纜越長,產生的浪涌電壓越高,時,可產生直流電壓的兩倍的浪涌電壓。這種情況下,很容易引起過壓過流保護,甚至燒壞模塊。
分布電容是一種分布參數,其數值不僅隨電纜的生產廠商不同而存在差異,而且會因為電纜的敷設方式、工作狀態和外界環境因素而不同,這需要在設計時綜合考慮。變頻器本體輸出問題
目前,幾乎所有的變頻器都采用脈寬調制技術,但是由于變頻器中的功率開關器件工作在開關狀態,器件的高速開關動作使得電壓和電流在短時間內發生跳變,這使得電壓、電流波形中含有大量的諧波成分,其中高次諧波會使變頻器輸出電流增大,造成電機繞組發熱,產生振動和噪聲,加速絕緣老化,還可能損壞電機;同時各種頻率的諧波會向空間發射不同頻率的無線電干擾,可能導致其它設備誤動作。并且使用變頻調速后,實現了電機的軟啟動,使電機工作平穩,電機軸承磨損減小,延長了電機使用壽命和維護周期。因此,變頻調速技術在石油、冶金、發電、鐵路、礦山等工業方面得到了廣泛的使用。1.電纜對稱性設計:對于1.8/3KW及以下變頻電機電纜,和對稱3+1芯和4芯電纜僅可用于主電源的輸入纜,但使用對稱結構電纜。變頻器與變頻電機問電纜均需采用對稱電纜結構,對稱電纜結構有3芯和3+3芯兩種,3+3芯電纜結構是將三大一小四芯絕緣線芯中第四芯(中性線芯)分解為三個截面較小的絕緣線芯,把三大三小線芯對稱成纜,對于6/10kV變頻電機電纜,該電纜結構與6/10kV普通電力電纜有所不同,普通電力電纜是將三根絕緣線芯采用銅帶屏蔽后成纜,而變頻電機電纜是由銅絲銅帶屏蔽后擠包分相護套,然后對稱成纜,對稱電纜結構由于導線的互換性,有更好的電磁相容性,對抑制電磁干擾起到一定的作用,能抵消高次諧彼中的奇次頻率,提高變頻電機電纜的抗干擾性,減少了整個系統中的電磁輻射。2.屏蔽結構的設計1.8/3kV及以下變頻電機電纜的屏蔽一般采用總屏蔽,6/10kv變頻電機電纜屏蔽由分相屏蔽和總屏蔽構成,分相屏蔽一般可采用銅帶屏蔽或銅絲銅帶組合屏蔽。總屏蔽結構可采用銅絲銅帶組合屏蔽、銅絲編織屏蔽、銅帶屏蔽、銅絲編織銅帶屏蔽等,屏蔽層截面與主線芯截面按一定比例。此結構的屏蔽電纜可抗電磁感應、接地不良和電源線傳導干擾,減小電感,防止感應電動勢過大。屏蔽層既起到抑制電磁波對外發射的作用,又可作為短路電流的通道,能起到中性線芯的保護作用。關于變頻器的輸出與電纜長度關系的研究:變頻器主要用于交流電動機轉速調節,除了具有的調速性能之外,變頻器還有顯著的節能作用,是企業技術改造和產品更新換代的理想調速裝置。但是由于變頻器的自身輸出特性和電纜分布電容的耦合作用,限制了變頻器的輸出距離。原因分析
變頻器的輸出到電機的電纜長度受到很多因素的影響,這其中的原因主要有以下幾點:分布電容。所謂分布電容,就是指由非電容形態形成的一種分布參數。一般是指在印制板或其他形態的電路形式,在線與線之間、印制板的上下層之間形成的電容。而變頻器輸出距離受限的問題,和電纜的分布電容有密切關系,不只是電容器才有電容,實際上任何兩個絕緣導體之間都存在電容。例如導線之間,導線與大地之間,都是被絕緣層和空氣介質隔開的,所以都存在著電容通常情況下,這個電容值很小,電纜長度較短時,它的實際影響可以忽略不計,如果電纜很長或傳輸信號頻率很高時,就必須考慮分布電容的作用。在電纜遠距離敷設系統中,電纜的電容會表現的較為明顯,對控制回路產生一定的影響,甚至影響控制功能,特別是對于變頻器控制普通低壓電機的控制回路,故障較多表現為過流、起停失靈等現象,給生產和維護造成很大的安全隱患。由于輸出線上的分布電容和分布電感的共振產生浪涌電壓,將會疊加到輸出電壓上,晶體管的開關頻率越高,電纜越長,產生的浪涌電壓越高,時,可產生直流電壓的兩倍的浪涌電壓。這種情況下,很容易引起過壓過流保護,甚至燒壞模塊。
分布電容是一種分布參數,其數值不僅隨電纜的生產廠商不同而存在差異,而且會因為電纜的敷設方式、工作狀態和外界環境因素而不同,這需要在設計時綜合考慮。變頻器本體輸出問題
目前,幾乎所有的變頻器都采用脈寬調制技術,但是由于變頻器中的功率開關器件工作在開關狀態,器件的高速開關動作使得電壓和電流在短時間內發生跳變,這使得電壓、電流波形中含有大量的諧波成分,其中高次諧波會使變頻器輸出電流增大,造成電機繞組發熱,產生振動和噪聲,加速絕緣老化,還可能損壞電機;同時各種頻率的諧波會向空間發射不同頻率的無線電干擾,可能導致其它設備誤動作。并且使用變頻調速后,實現了電機的軟啟動,使電機工作平穩,電機軸承磨損減小,延長了電機使用壽命和維護周期。因此,變頻調速技術在石油、冶金、發電、鐵路、礦山等工業方面得到了廣泛的使用。關于變頻器的輸出與電纜長度關系的研究:變頻器主要用于交流電動機轉速調節,除了具有的調速性能之外,變頻器還有顯著的節能作用,是企業技術改造和產品更新換代的理想調速裝置。但是由于變頻器的自身輸出特性和電纜分布電容的耦合作用,限制了變頻器的輸出距離。原因分析
變頻器的輸出到電機的電纜長度受到很多因素的影響,這其中的原因主要有以下幾點:分布電容。所謂分布電容,就是指由非電容形態形成的一種分布參數。一般是指在印制板或其他形態的電路形式,在線與線之間、印制板的上下層之間形成的電容。而變頻器輸出距離受限的問題,和電纜的分布電容有密切關系,不只是電容器才有電容,實際上任何兩個絕緣導體之間都存在電容。例如導線之間,導線與大地之間,都是被絕緣層和空氣介質隔開的,所以都存在著電容通常情況下,這個電容值很小,電纜長度較短時,它的實際影響可以忽略不計,如果電纜很長或傳輸信號頻率很高時,就必須考慮分布電容的作用。在電纜遠距離敷設系統中,電纜的電容會表現的較為明顯,對控制回路產生一定的影響,甚至影響控制功能,特別是對于變頻器控制普通低壓電機的控制回路,故障較多表現為過流、起停失靈等現象,給生產和維護造成很大的安全隱患。由于輸出線上的分布電容和分布電感的共振產生浪涌電壓,將會疊加到輸出電壓上,晶體管的開關頻率越高,電纜越長,產生的浪涌電壓越高,時,可產生直流電壓的兩倍的浪涌電壓。這種情況下,很容易引起過壓過流保護,甚至燒壞模塊。
分布電容是一種分布參數,其數值不僅隨電纜的生產廠商不同而存在差異,而且會因為電纜的敷設方式、工作狀態和外界環境因素而不同,這需要在設計時綜合考慮。變頻器本體輸出問題
目前,幾乎所有的變頻器都采用脈寬調制技術,但是由于變頻器中的功率開關器件工作在開關狀態,器件的高速開關動作使得電壓和電流在短時間內發生跳變,這使得電壓、電流波形中含有大量的諧波成分,其中高次諧波會使變頻器輸出電流增大,造成電機繞組發熱,產生振動和噪聲,加速絕緣老化,還可能損壞電機;同時各種頻率的諧波會向空間發射不同頻率的無線電干擾,可能導致其它設備誤動作。總屏蔽結構可采用銅絲銅帶組合屏蔽、銅絲編織屏蔽、銅帶屏蔽、銅絲編織銅帶屏蔽等,屏蔽層截面與主線芯截面按一定比例。此結構的屏蔽電纜可抗電磁感應、接地不良和電源線傳導干擾,減小電感,防止感應電動勢過大。屏蔽層既起到抑制電磁波對外發射的作用,又可作為短路電流的通道,能起到中性線芯的保護作用。關于變頻器的輸出與電纜長度關系的研究:變頻器主要用于交流電動機轉速調節,除了具有調速性能之外,變頻器還有顯著的節能作用,是企業技術改造和產品更新換代的理想調速裝置。但是由于變頻器的自身輸出特性和電纜分布電容的耦合作用,限制了變頻器的輸出距離。原因分析
變頻器的輸出到電機的電纜長度受到很多因素的影響,這其中的原因主要有以下幾點:分布電容。所謂分布電容,就是指由非電容形態形成的一種分布參數。一般是指在印制板或其他形態的電路形式,在線與線之間、印制板的上下層之間形成的電容。而變頻器輸出距離受限的問題,和電纜的分布電容有密切關系,不只是電容器才有電容,實際上任何兩個絕緣導體之間都存在電容。例如導線之間,導線與大地之間,都是被絕緣層和空氣介質隔開的,所以都存在著電容通常情況下,這個電容值很小,電纜長度較短時,它的實際影響可以忽略不計,如果電纜很長或傳輸信號頻率很高時,就必須考慮分布電容的作用。在電纜遠距離敷設系統中,電纜的電容會表現的較為明顯,對控制回路產生一定的影響,甚至影響控制功能,特別是對于變頻器控制普通低壓電機的控制回路,故障較多表現為過流、起停失靈等現象,給生產和維護造成很大的安全隱患。由于輸出線上的分布電容和分布電感的共振產生浪涌電壓,將會疊加到輸出電壓上,晶體管的開關頻率越高,電纜越長,產生的浪涌電壓越高,時,可產生直流電壓的兩倍的浪涌電壓。這種情況下,很容易引起過壓過流保護,甚至燒壞模塊。
分布電容是一種分布參數,其數值不僅隨電纜的生產廠商不同而存在差異,而且會因為電纜的敷設方式、工作狀態和外界環境因素而不同,這需要在設計時綜合考慮。變頻器本體輸出問題
目前,幾乎所有的變頻器都采用脈寬調制技術,但是由于變頻器中的功率開關器件工作在開關狀態,器件的高速開關動作使得電壓和電流在短時間內發生跳變,這使得電壓、電流波形中含有大量的諧波成分,其中高次諧波會使變頻器輸出電流增大,造成電機繞組發熱,產生振動和噪聲,加速絕緣老化,還可能損壞電機;同時各種頻率的諧波會向空間發射不同頻率的無線電干擾,可能導致其它設備誤動作。
關于變頻器的輸出與電纜長度關系的研究:變頻器主要用于交流電動機轉速調節,除了具有的調速性能之外,變頻器還有顯著的節能作用,是企業技術改造和產品更新換代的理想調速裝置。但是由于變頻器的自身輸出特性和電纜分布電容的耦合作用,限制了變頻器的輸出距離。原因分析
變頻器的輸出到電機的電纜長度受到很多因素的影響,這其中的原因主要有以下幾點:分布電容。所謂分布電容,就是指由非電容形態形成的一種分布參數。一般是指在印制板或其他形態的電路形式,在線與線之間、印制板的上下層之間形成的電容。而變頻器輸出距離受限的問題,和電纜的分布電容有密切關系,不只是電容器才有電容,實際上任何兩個絕緣導體之間都存在電容。例如導線之間,導線與大地之間,都是被絕緣層和空氣介質隔開的,所以都存在著電容通常情況下,這個電容值很小,電纜長度較短時,它的實際影響可以忽略不計,如果電纜很長或傳輸信號頻率很高時,就必須考慮分布電容的作用。在電纜遠距離敷設系統中,電纜的電容會表現的較為明顯,對控制回路產生一定的影響,甚至影響控制功能,特別是對于變頻器控制普通低壓電機的控制回路,故障較多表現為過流、起停失靈等現象,給生產和維護造成很大的安全隱患。由于輸出線上的分布電容和分布電感的共振產生浪涌電壓,將會疊加到輸出電壓上,晶體管的開關頻率越高,電纜越長,產生的浪涌電壓越高,時,可產生直流電壓的兩倍的浪涌電壓。這種情況下,很容易引起過壓過流保護,甚至燒壞模塊。
分布電容是一種分布參數,其數值不僅隨電纜的生產廠商不同而存在差異,而且會因為電纜的敷設方式、工作狀態和外界環境因素而不同,這需要在設計時綜合考慮。變頻器本體輸出問題
目前,幾乎所有的變頻器都采用脈寬調制技術,但是由于變頻器中的功率開關器件工作在開關狀態,器件的高速開關動作使得電壓和電流在短時間內發生跳變,這使得電壓、電流波形中含有大量的諧波成分,其中高次諧波會使變頻器輸出電流增大,造成電機繞組發熱,產生振動和噪聲,加速絕緣老化,還可能損壞電機;同時各種頻率的諧波會向空間發射不同頻率的無線電干擾,可能導致其它設備誤動作。
5變頻電纜屏蔽層可抗電磁感應、接地不良和電源線傳導干擾,減小電感,防止感應電動勢過大。屏蔽層既起到抑制電磁波對外發射的作用,又可作為短路電流的通道,能起到中性線芯的保護作用。?
6以普通的3+1型電力電纜為例,完整的三項供電系統,當三項電流平衡時,其中性線芯的電流為零;當高次諧波產生時,經過電纜的多次反射,便會出現對此的波峰與波峰或波谷與波谷相疊加的機會,電纜越長疊加機會越多表現得也就越明顯。加之電纜這個大的電容本身對高次諧波就有著放大的作用,對于3+1型電纜,高次諧波產生的電流分量在中性線芯內無相位差,這樣一來電流將會疊加成原分量的數倍,中性線芯在高頻脈沖下很快就會被擊穿 。為了解決這個問題,我們將3+1型的電纜中的1芯分成了三份,以對稱的方式做成3+3結構,這樣,三個中性線芯的相位一次滯后120°,形成了一個對稱平衡的狀態,使得電流不會型疊加,有效的減小了高次諧波對變頻電纜的危害。此為變頻電纜選擇對稱3+3結構的理由之一。