工控摘要:很少有其它應用場所和車輛行駛環境一樣,對各種電子元器件的要求異常嚴苛,它往往意味著如何讓用于汽車或卡車的電機設計實現更高的耐用性、可靠性和率將成為一項嚴格的挑戰。
例如,機架式電動助力轉向系統可能會面臨超過100℃的環境溫度,以及高沖擊和振動負載,并且還會接觸到石油產品和鹽水、噴霧等——所有這些都要求提供150A或更高的電機相電流,同時還要求損耗能夠達到zui小。其次,制造成本、尺寸大小和重量也是需要考慮的另一個因素,因此針對特殊設計查找合適的組件就顯得尤為重要。
目前,出現了一種趨勢有助于汽車設計師改進電氣化,即日益普遍采用的高度集成汽車功率模塊(APM,AutomotivePowerModules),此類模塊能夠以較小的尺寸提供較高的功率密度,本文將重點探討APM功率模塊在提高汽車電氣性能的同時,使設計更為緊湊的實現方式。
APM功率模塊的構成
一般來說,APM汽車功率模塊通常在單個緊湊封裝中集成了全部功能所需的器件,這很容易在設計中實現。例如,飛兆半導體的FTCO3V451就是一款符合汽車應用要求的MOSFET逆變器功率級模塊,它可提供三相逆變器的所有功能,包括六個提供高電流、率操作的MOSFET。該模塊中還集成了從電池到地的RC緩沖電路,緊密耦合到MOSFET橋,以改進EMI性能;還包括用于電流感測的0.5m?精密分流電阻,可提供電流反饋,實現電機控制和過流保護。另外,該汽車功率模塊內部還設有一個溫度感測NTC,用于監控逆變器的發熱情況。和其他制造商APM模塊的設計原理一樣,這款功率模塊可提供不同的電路組合——設計人員可使用APM汽車功率模塊代替分立式設計,由此創建出一個尺寸更小、能夠提供更高功率密度的系統。
在實際應用中,APM功率模塊通常被直接安裝在電機外殼表面,允許PCB僅沿模塊一側連接至信號引腳。
在所示的電路中,電源線放在模塊相反的兩側,用于分離控制和電源接口。這樣,PCB上就不需要高電流走線,使得設計實施和生產更為簡單。傳熱式直接敷銅(DBC)結構在安裝表面和電氣有源組件之間提供2500Vrms電氣隔離。
減少機械連接,提升熱性能
在使用分立式封裝組件開發的逆變器中,如TO-263或MO-299封裝通常都會有較多的機械接口需要處理,其中包括MOSFET封裝至PCB、PCB至隔離散熱器、散熱器至散熱片,某些情況下還可能有散熱片至下一級組件的連接等。這些機械接口與系統的熱性能緊密相關,而在APM汽車功率模塊中,這些大部分的機械接口已整合于APM之中,在許多情況下,要進行的*純機械連接是從模塊到散熱片。
與安裝在PCB或IMS上的六個或更多分立式MOSFET封裝部件相比,通過APM功率模塊實現的簡化機械接口設計可獲得*的熱性能。如圖2所示,它顯示出對于逆變器的所有六個MOSFET,從結至外殼以及通常從結至散熱片的瞬態熱阻,結至散熱片的熱阻體現為采用30?m厚系數為2.1W/(m-K)的導熱材料。
采用這種從散熱片到硅的簡單堆疊,可獲得出色的熱性能,也使得全逆變器可采用*功率密度的封裝。例如,圖2所使用的APM功率模塊其尺寸為29x44x5mm,可構成約400mL總容量的極緊湊逆變器組件,包括繼電器、直流鏈路濾波器組件、控制PCB、散熱片和連接器等。
其它性能優勢
采用分立式解決方案,載流量容易受到引線框架和IMS走線厚度的限制。而使用單封裝的APM功率模塊可顯著增強載流量。此外,分立式解決方案還有較高的總逆變器電阻、逆變器電感、走線電阻和柵極驅動電路電感,以及更高的熱阻(結-散熱片)。為此,所有這些性能特性通過將分立式解決方案替換為APM功率模塊而得到改進。
另一方面,更好的EMC特性也是使用APM功率模塊的另一個原因。采用這種模塊可以更輕松地隔離功率和信號引腳,實現更低的電感并靠近RC濾波,同時,使用APM功率模塊還可以提供更高的扭矩輸出,由此將電動系統的應用領域擴大至重型車輛。
結論
APM功率模塊可用于各種汽車電子子系統,尤其適用于電控助力轉向、油和水泵,以及冷卻風扇應用中。汽車電子設計工程師充分利用現成的APM功率模塊,將能夠更好地實現汽車子系統的電源管理功能。APM功率模塊以更小的尺寸達到更高的功率密度,并且zui大程度地減少了機械連接,降低了熱阻,更為重要的是,與分立式解決方案相比,這種APM功率模塊還可以提高汽車電子的各項電氣性能。
例如,機架式電動助力轉向系統可能會面臨超過100℃的環境溫度,以及高沖擊和振動負載,并且還會接觸到石油產品和鹽水、噴霧等——所有這些都要求提供150A或更高的電機相電流,同時還要求損耗能夠達到zui小。其次,制造成本、尺寸大小和重量也是需要考慮的另一個因素,因此針對特殊設計查找合適的組件就顯得尤為重要。
目前,出現了一種趨勢有助于汽車設計師改進電氣化,即日益普遍采用的高度集成汽車功率模塊(APM,AutomotivePowerModules),此類模塊能夠以較小的尺寸提供較高的功率密度,本文將重點探討APM功率模塊在提高汽車電氣性能的同時,使設計更為緊湊的實現方式。
APM功率模塊的構成
一般來說,APM汽車功率模塊通常在單個緊湊封裝中集成了全部功能所需的器件,這很容易在設計中實現。例如,飛兆半導體的FTCO3V451就是一款符合汽車應用要求的MOSFET逆變器功率級模塊,它可提供三相逆變器的所有功能,包括六個提供高電流、率操作的MOSFET。該模塊中還集成了從電池到地的RC緩沖電路,緊密耦合到MOSFET橋,以改進EMI性能;還包括用于電流感測的0.5m?精密分流電阻,可提供電流反饋,實現電機控制和過流保護。另外,該汽車功率模塊內部還設有一個溫度感測NTC,用于監控逆變器的發熱情況。和其他制造商APM模塊的設計原理一樣,這款功率模塊可提供不同的電路組合——設計人員可使用APM汽車功率模塊代替分立式設計,由此創建出一個尺寸更小、能夠提供更高功率密度的系統。
在實際應用中,APM功率模塊通常被直接安裝在電機外殼表面,允許PCB僅沿模塊一側連接至信號引腳。
在所示的電路中,電源線放在模塊相反的兩側,用于分離控制和電源接口。這樣,PCB上就不需要高電流走線,使得設計實施和生產更為簡單。傳熱式直接敷銅(DBC)結構在安裝表面和電氣有源組件之間提供2500Vrms電氣隔離。
減少機械連接,提升熱性能
在使用分立式封裝組件開發的逆變器中,如TO-263或MO-299封裝通常都會有較多的機械接口需要處理,其中包括MOSFET封裝至PCB、PCB至隔離散熱器、散熱器至散熱片,某些情況下還可能有散熱片至下一級組件的連接等。這些機械接口與系統的熱性能緊密相關,而在APM汽車功率模塊中,這些大部分的機械接口已整合于APM之中,在許多情況下,要進行的*純機械連接是從模塊到散熱片。
與安裝在PCB或IMS上的六個或更多分立式MOSFET封裝部件相比,通過APM功率模塊實現的簡化機械接口設計可獲得*的熱性能。如圖2所示,它顯示出對于逆變器的所有六個MOSFET,從結至外殼以及通常從結至散熱片的瞬態熱阻,結至散熱片的熱阻體現為采用30?m厚系數為2.1W/(m-K)的導熱材料。
采用這種從散熱片到硅的簡單堆疊,可獲得出色的熱性能,也使得全逆變器可采用*功率密度的封裝。例如,圖2所使用的APM功率模塊其尺寸為29x44x5mm,可構成約400mL總容量的極緊湊逆變器組件,包括繼電器、直流鏈路濾波器組件、控制PCB、散熱片和連接器等。
其它性能優勢
采用分立式解決方案,載流量容易受到引線框架和IMS走線厚度的限制。而使用單封裝的APM功率模塊可顯著增強載流量。此外,分立式解決方案還有較高的總逆變器電阻、逆變器電感、走線電阻和柵極驅動電路電感,以及更高的熱阻(結-散熱片)。為此,所有這些性能特性通過將分立式解決方案替換為APM功率模塊而得到改進。
另一方面,更好的EMC特性也是使用APM功率模塊的另一個原因。采用這種模塊可以更輕松地隔離功率和信號引腳,實現更低的電感并靠近RC濾波,同時,使用APM功率模塊還可以提供更高的扭矩輸出,由此將電動系統的應用領域擴大至重型車輛。
結論
APM功率模塊可用于各種汽車電子子系統,尤其適用于電控助力轉向、油和水泵,以及冷卻風扇應用中。汽車電子設計工程師充分利用現成的APM功率模塊,將能夠更好地實現汽車子系統的電源管理功能。APM功率模塊以更小的尺寸達到更高的功率密度,并且zui大程度地減少了機械連接,降低了熱阻,更為重要的是,與分立式解決方案相比,這種APM功率模塊還可以提高汽車電子的各項電氣性能。
全年征稿/資訊合作
聯系郵箱:1271141964@qq.com
免責聲明
- 凡本網注明"來源:智能制造網"的所有作品,版權均屬于智能制造網,轉載請必須注明智能制造網,http://www.xksjj.com。違反者本網將追究相關法律責任。
- 企業發布的公司新聞、技術文章、資料下載等內容,如涉及侵權、違規遭投訴的,一律由發布企業自行承擔責任,本網有權刪除內容并追溯責任。
- 本網轉載并注明自其它來源的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點或證實其內容的真實性,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品來源,并自負版權等法律責任。
- 如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。
2025成都國際無人系統(機)技術及設備展覽會
展會城市:成都市展會時間:2025-10-10