孫經理
簡介
大型溫泉度假村打井價格,溫泉鉆探是使用鉆探設備(鉆井機)向地下約1000米深處鉆探細長孔洞。(以1000m井為例)孔的直徑zui上部約40cm,zui下部約15cm左右,就像倒立著的竹筍一樣逐段鉆進。這是一種ji為經濟型的鉆探方法地熱能屬于朝陽產業,它是新能源領域中,非常有生命力的行業,是新能源的創新,也是新能源的創業,在中國大地上開始了星火燎原的成長之后,目前進入了新的階段。而地熱能開發中,zui重要的工程,就是地熱鉆井。那么地熱鉆井,是否能像其他新興產業那樣,看到機會就上馬,走狂放不羈的路線?事實證明,地熱井工程,并不是靠喊口號就能提高生產力的行業,它是需要腳踏實地,一個蘿卜一個坑的進行按部就班的生產的,地熱鉆井不是你想怎么鉆就能怎么鉆的,在進行地熱井工程時,要“瞻前顧后”。
地熱能〔人類很早以前就開始利用地熱能,例如利用溫泉沐浴、醫療,利用地下熱水取暖、建造農作物溫室、水產養殖及烘干谷物等。但真正認識地熱資源并進行較大規模的開發利用卻是始于20世紀中葉。
大型溫泉度假村打井價格地熱能
部分是來自地球深處的可再生xing熱能,它起于地球的熔融巖漿和放射xing物質的衰變。還有一小部分能量來自太陽,大約占總的地熱能的5%,表面地熱能大部分來自太陽。地下水的深處循環和來自ji深處的巖漿侵入到地殼后,把熱量從地下深處帶至近表層。其儲量比人們所利用能量的總量多很多,大部分集中分布在構造板塊邊緣一帶,該區域也是火山和地震多發區。它不但是無污染的清潔能源,而且如果熱量提取速度不超過補充的速度,那么熱能而且是可再生的。
怎樣利用這種巨大的潛在能源呢?意大利的皮也羅·吉諾尼·康蒂王子于1904年在拉德雷羅*把天然的地熱蒸氣用于發電。地熱發電是利用液壓或爆破碎裂法把水注入到巖層,產生高溫蒸氣,然后將其抽出地面推動渦輪機轉動使發電機發出電能。在這過程中,將一部分沒有利用到的水蒸氣或者廢氣,經過冷凝器處理還原為水送回地下,這樣循環往復。1990年安裝的發電能力達到6000MW,直接利用地熱資源的總量相當于4.1Mt油當量。
地熱能是一種新的潔凈能源,在當今人們的環保意識日漸增強和能源日趨緊缺的情況下,對地熱資源的合理開發利用已愈來愈受到人們的青睞。其中距地表2000米內儲藏的地熱能為2500億噸標準煤。全國地熱可開采資源量為每年68億立方米,所含地熱量為973萬億千焦耳。在地熱利用規模上,我國近些年來一直位居世界*,并以每年近10%的速度穩步增長。
在我國的地熱資源開發中,經過多年的技術積累,地熱發電效益顯著提升。除地熱發電外,直接利用地熱水進行建筑供暖、發展溫室農業和溫泉旅游等利用途徑也得到較快發展。全國已經基本形成以西藏羊八井為代表的地熱發電、以天津和西安為代表的地熱供暖、以東南沿海為代表的療養與旅游和以華北平原為代表的種植和養殖的開發利用格局發電
地熱發電實際上就是把地下的熱能轉變為機械能,然后再將機械能轉變為電能的能量轉變過程或稱為地熱發電。開發的地熱資源主要是蒸汽型和熱水型兩類,因此,地熱發電也分為兩大類 [2] 。
地熱蒸汽發電分類
地熱地球物理勘查技術是依據地熱資源的巖石物理特征、地球物理相應特征,落實地熱田的生-儲-蓋-控熱構造等地質問題。圈定地熱異常范圍、熱儲空間分布特征;圈定隱伏巖漿巖及蝕變帶分布;確定基底起伏及隱伏斷裂的空間分布;確定勘查區地層結構、熱儲物性及巖性特征、富集區分布;確定干熱巖人工造儲體積、換熱面積大小等。
地熱地球物理勘查技術主要有:電(磁)勘探、重磁勘探、地震勘探、(人工地震、微地震、隨鉆地震)、遙感、測井等。利用電磁勘探解釋斷裂構造、熱儲異常范圍與埋深、地熱相關蝕變帶、熱儲特征;利用重磁勘探解釋斷裂構造、熱儲異常范圍與埋深、地熱相關蝕變帶;利用地震勘探較準確的圈定地層結構、熱儲埋深及斷裂特征;利用微地震確定干熱巖人工造儲特征。
解決不同不同類型地熱資源勘探開發問題,需要不同的地球物理技術流程與組合。常規地熱能發育深度一般為200~3000m,其特點是地熱水溫度大于25℃,主要發育與巖石空隙中,依據構造成因可分為沉積盆地型與隆起山地型。以下對不同種類地熱資源的物探技術進行說明
隆起山地型地熱資源物探技術
隆起山地型對流高溫地熱資源主要分布于藏南、川西、滇西和中國臺灣地區,中低溫地熱資源主要分布于東南沿海地區和膠東、遼東半島。該類成因與溫泉基本相同,不同的是由于地熱水循環的動力條件不足和導通條件稍差而未能露出地表,埋藏在地下一定深度。已知大型水熱系統都和斷層廣泛發育的地震活動區共生。
該類型地熱系統勘探的重點在于基底起伏特征分析、隱伏控熱斷裂帶、復雜地表地球物理勘探技術應用、及地層典型特征的描述,采用的物探技術主要有遙感、直流電法、可控源電磁法、大地電磁法、高精度重磁法等
2010年青海湖旁甘子河地熱田采用遙感、可控源音頻大地電磁探測及直流電測深等技術,查明了勘查區地層電性特征,以及隱伏控熱斷裂帶的位置、深度、傾向、傾角等構造形態特征。
2012年四川省甘孜自治州康定縣熱水塘地熱田采用了可控源音頻大地電磁探測和物探方法對地熱資源成因和范圍進行了勘察。項目區位于康定縣城沿雅拉河北上至龍布段峽谷區。該區主要受東西向應力作用,形成了北西向斷裂構造體系,同時在北東、北西方向上形成了密集的縱張裂隙。這些縱張裂隙形成了地下水補給的重要通道,溫泉多在斷裂帶上并且兩側有縱張裂隙相交的位置呈珠狀出露。
調查結果顯示,區內的主要裂隙發育方向北東向、北西向。大雪山-農戈山斷裂、雅拉河斷裂相距2-5km,構造活動強烈,其間巖體較破碎,從物探解釋圖上也普遍存在雅拉河右岸巖體比左岸破碎的現象。根據物探資料分析,熱源為斷裂深循環加熱和巖漿巖體蝕變放熱;斷裂破碎帶及花崗巖體中裂隙共同構成調查區的熱儲層,并沿斷裂帶不均勻分布;蓋層為河床下方一層相對連續的冰水堆積半膠結-膠結的漂卵石層。
沉積盆地型地熱資源地球物理勘探技術
該類型地熱資源分布于華北平原、汾渭盆地、松遼盆地、淮河盆地、蘇北盆地、江漢盆地、銀川平原、河套平原、準噶爾盆地等地區,主要熱儲層為厚度數百米至數千米第三系砂巖、砂礫巖,以及古隆起。
電磁法是松散巖類裂隙型地熱資源勘探的主要方法。巖石的導電性在很大程度上依賴于裂隙和孔隙中所充填的水溶液,低電阻率指示巖石的結構松散、濕度大。同種巖石中電阻率相對較低的地方表明巖石的結構疏松、裂隙和孔隙發育、含水性較好。在印尼Darajat地熱田進行了廣泛的包括85個地熱場在內的大地電磁測量,以繪制地熱儲層和上覆黏土蓋層圖。起伏的地層和黏土蓋層邊緣的幾何形狀可以給出儲層深度的3D電阻率結構。綜合物探分公司在分析湯原斷陷的地質及地球物理特征的基礎上,劃分出了四套MT反演的電性層。通過鉆井、地質、MT反演資料的綜合分析確定了第四電性層為地熱主要目的層。
埋藏于地下一定深度之下的古構造面是是地熱水發育的有利部位。古構造面是曾經的剝蝕夷平面,該面上局部為碳酸鹽巖地層,經地史時期*的風華剝蝕形成巖溶,后經構造變動成埋藏,其上覆蓋較厚的地層,該巖溶水被埋藏于地下一定深度并被升溫成為隱伏地熱水。古構造面地熱田一般具有重力高、電阻率高及波速高的特點。同時由于地熱田常與構造及火山活動有關,此類巖石一般具有較強磁性。
山西水利水電勘測設計研究院在山西祁縣利用磁力異常有力探測了巖漿侵入巖的位置及埋深,結合放射性氡測量,正確地預測了溫泉的位置。遼寧省物測勘察院利用重磁等物探方法,對了解盆地基底形態、蓋層厚度、火山巖分布、斷裂劃分,取得了良好的效果,為沈北地區地熱勘察提供了基礎性資料。青海省水文地質工程地質環境地質調查院將重力與地震、電測法配合,準確地解釋了西寧盆地的基底起伏和控溫斷裂構造。